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FOREWORD

This work reflects ongoing research that has been sponsored within the Combat Systems
Department, Naval Surface Warfare Center, Dahlgren Division, that responds to the need
for improved techniques in dealing with the situation where many threats are attacking a
battle group. In such a situation, each threat has a large number of potential targets from
which to choose. Prioritization of the threats within a raid that involves a large number
of Anti-Ship Cruise Missiles (ASCMs) presents a problem to a global scheduler in terms of
both selection of shooting platforms and determining the queue for engagement scheduling.
This problem becomes particularly challenging when placed in the context of the network
centric paradigm envisioned for the future of the surface navy, and represents a significant
potential problem that needs to be addressed.

This work not only addresses the problem by discussing its formulation and occurrence,
it also proposes a solution. Threats targeting high valued assets such as a carrier would
be ranked above those targeting a destroyer. Similarly, a threat arriving earlier would be
ranked above one arriving later. But what makes this problem not straightforward is such
concerns as: How does one rank a threat arriving at a destroyer earlier than one arriving
later at a carrier? The ranking scheme proposed here is based on the “Loss Threshold Time”
(LTT), which is defined as the time at which the expected destructive potential of a threat
exceeds a specified value. Then, threats with earlier LTTs are ranked higher. An algorithm
is proposed that estimates the probability of each defended ship becoming the target of a
given threat. The result is a matrix of “Objective Probabilities”, which is used to calculate
the “Expected Loss” (EL) function of each threat. The objective probabilities are higher for
ships that can be reached earlier and more easily. The combination of these two concepts
represents a conceptual shift in how warfare planning is considered in algorithm design and
implementation. This work represents a significant conceptual breakthrough that may have

practical consequences in future combat systems.

This work was supported by the Office of Naval Research (Code 311).

KENNETH C. BAILE, Head
Combat Systems Department
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CHAPTER 1

INTRODUCTION

The purpose of this study is to determine for each individual threat in an AAW or
TBM engagement the likelihood that the combat system will engage a defended area or a
particular ship in a task force. The threats include both Anti-Ship Cruise Missiles (ASCM)
and Tactical Ballistic Missiles (TBM). Their intended targets may include ships at sea and/or

extended shore areas and/or specified shore positions. Any of these potential targets are to
be defended.

Matters of engageability or fire control are not considered. Each threat is to be assigned
a value indicating both the potential harm it is capable of inflicting and the urgency by which
the defenders should deal with it. These two metrics, of “Potential Harm” and “Urgency”
are quantized so that they are available to the decision-maker that prioritizes and engages
the threats. Or, these two measures may be combined into a single value. This approach

does not consider the decision procedure invoked after the threat evaluation.

In view of the limited scope of the present study as outlined, the inputs required in
this study are threat state information and the positions of the defended points and areas.
The shooting capacity of a particular defensive platform or defense strategy is not needed.
The positions of the ships may change during the engagement. An assignment of value is
given each defended point and area. We do not consider complications related to situational

variation in value (e.g., the increased value of a surviving carrier after loss of the others).

The threat information ideally consists of the time histories of all threats. The past
track history of a threat undoubtedly contains information of use in its identification as
well as prediction of its potential future behavior. However, for simplicity, the only threat
information used is the latest threat-state estimate and error covariance for each threat, plus
any estimate of its physical parameters that may be available. Usage of past flight history

in the estimation of physical parameters is assumed to have been carried out previously.

The metrics Potential Harm and Urgency each require knowledge or a hypothesis re-
garding the threat goal. Since the state of a threat cannot be known with certainty, an
“Objective Probability” is estimated for each of its possible targets.

1-1
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Chapter 2 gives an overview of how the threats are evaluated. Chapters 3, 4, and 5 discuss
the treatment of ASCM threats. Chapters 6, 7, and 8 discuss the TBM threat. Chapter 9
discusses the method by which the Objective Probabilities and other evaluation parameters
are estimated. Chapter 10 discusses the organization of the computations. Chapter 11 gives

a summary and conclusions.

Of crucial importance is the estimation of the Earliest Time of Arrival (ETA) of a given
threat to a given asset (for all threat-asset pairings). Without knowledge of the intention or
capability of the threat, the assumed future time history of the threat position is hypothetical.
The assumptions on which the ETA is based are designed to result in a simple algorithm
that can be implemented without great expenditure of computing resources and still provide
a usable value to represent a rough lower bound of the possible ETA. Thus, the objective is
to represent the most pessimistic (i.e., conservative) situation. The ASCM threat is assumed
to be unpowered and flying with constant speed. Not only is this a questionable assumption,

but selection of the speed value introduces further error.

For an ASCM this value is set equal to the expected speed from the latest state estimate.
For a small to moderate threat range these assumptions may not be too bad. But when the
latest observed threat altitude is high, this estimate may grossly underestimate the average
speed and correspondingly overestimate the ETA. This suggests a future upgrade in which
a “constant energy” rather than a “constant speed” trajectory is used in some cases for the
estimation of ETA.

1-2
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CHAPTER 2

OVERVIEW OF THREAT EVALUATION

We make provision for treating two kinds of threats,

ASCM
TBM

and two kinds of defended positions,

Defended Points (e.g., ships)
Defended Shore Areas (e.g., cities)

Treatment of ASCMs differs from treatment of TBMs in the following respects. Each ASCM
is considered potentially able to target any of the Defended Points. These are given “Ob-
Jective Probabilities” to indicate which are more likely to be targeted. These Objective
Probabilities therefore depend on each Threat-Objective pairing.

For simplicity, the Objective Probabilities are based on the ezpected state of the threat,
regardless of the errors in the state estimation. Maneuver is required for the threat to reach
any of the Defended Points. The Objective Probability is high for points that can be reached
quickly (early time of arrival) and easily (low drag loss). The Objective Probability is zero
for those points impossible for the threat to reach under reasonable assumptions regarding

its flight capabilities.

In contrast, the trajectory of a TBM is considered determined by its characteristics
(e.g., mass, drag coefficient, etc.) and initial state. Maneuver is not considered. A tra-
jectory calculated by simple prediction from the initial expected state may not reach any
of the defended assets. But these are possible targets because the initial threat state and
aerodynamic characteristics are not precisely known. Accordingly, both the expected ini-
tial threat state and the covariance matrix of the threat-state estimation errors, as well as
the aerodynamic uncertainties, are calculated. These determine a “footprint,” which is the
Probability Density Function (PDF) of the threat’s impact point. (The reader is cautioned
that the term “footprint” has been given other meanings.) Defended Points lying within this
footprint are assigned Objective Probabilities related to the footprint PDF.

2-1
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Extended shore areas may be targets of TBMs, but not of ASCMs unless there are
Defended Points within the area. The Defended Points are represented by their positions,
which may move during the engagement, and by an “Actual Value” (V;), and a “Perceived
Value” (V). The Perceived Value is used to calculate the Objective Probability, while the
Actual Value determines how much effort is to be expended in its defense.

A Defended Area can be represented geometrically by a stationary circle, ellipse, or
a polygon. The programs and examples presented here use ellipses. A TBM generates
an Objective Probability determined by the intersection of its footprint onto the Defended
Area. There is no structure. A real defended area such as a city might have variation in
value throughout its area. This feature can be simulated by placing defended points within

the area.

The Objective Probabilities form a two-dimensional matrix whose dimensions equal the
number of threats (active at a given time) in one dimension, and the number of Defended
Points and Defended Areas in the other. These values, along with the V; and V, values,

constitute an important input into the evaluation of the threats.

Engageability of the threat is not considered. The number and positions of the shooting
platforms is not included among the data used. No PIPs are generated. The Objective
Probabilities are estimated without regard to whether or not the threat can be engaged, or

the most favorable launch times, etc.

2.1 Simplified Trajectories

For each (ASCM - Defended Point) pair a trajectory producing the soonest arrival time
is determined. The initial threat-state error covariance is ignored, and the trajectory is based
entirely on the initial ezpected state. The initial speed is maintained constant throughout
the flight. The trajectory producing the earliest arrival time is determined. This will usually
lie on the plane determined by the initial threat velocity and the Defended Point. Initially
there is a maximum-g turn followed by a CV segment to the Defended Point. Cases where
this pattern would require the threat to fly below the sea surface are adjusted.

The initial state estimate of a TBM including the covariance matrix generates a suite of
trajectories, one for each possible initial state. The flight maintains constant speed with no
maneuver, following a Keplerian orbit modified for liftless drag in an exponential atmosphere.

2.2 Determination of the Objective Probabilities

At any given time, all the threats that are active at that time are considered one by one.

2-2
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The ASCMs are treated separately from the TBMs.

For an ASCM, all the Defended Points are considered one by one. For each Defended
Point the drag loss along the simplified trajectory is approximated based upon available
threat information. Incomplete threat information is assumed to satisfy the hypotheses that
it minimizes both flight time and drag loss. The Objective Probability for each Defended
Point is based on these two values. After all Objective Probabilities have been approximated

in this way, they are normalized so that their sum over all Defended Points is unity.

For a TBM, the first step is to estimate its footprint in order to determine where it will
land on the Earth’s surface. The expected initial threat state is used to determine a. single
Keplerian trajectory to the Earth surface, to find an impact position and arrival time. Next,
the atmospheric effect is approximated by using a simplified dynamic model of a mass point
falling in a planar orbit, without lift, from the expected initial state to the Earth’s surface.
The resulting flight time and distance provide a correction to the previously-determined

Keplerian orbit to give a more accurate impact position and flight time.

The initial state covariance is assumed to be Gaussian. Even with this idealization, the
complicated nonlinear flight path makes it difficult to get a closed-form footprint PDF. In-
stead, the impact position covariance is determined by assuming small errors and a parabolic
planar trajectory through an airless medium. This impact covariance is centered on the ex-

pected impact point and is used to generate a two-dimensional Gaussian PDF to represent
the impact footprint.

Defended Points lying within the impact footprint are assigned Objective Probabilities
related to the Perceived Value and the PDF density at that position. Defended Areas
intersecting the footprint are assigned Objective Probabilities related to their Perceived
Values and the integrated footprint probability of impact in the intersection.

2.3 Coordinate Transformations

Basically, all positions are referred to (rotating) geographic coordinates (¢,L,r). Ve-
locities, on the other hand, are represented as dimensional components (¥,v,w) in [L/T] in
the directions (4, L,7) at each point. (This means that the vector represented by certain
components at one point is not parallel to the vector represented by the same components
at another point.) It is useful to find the transformation between velocity components at
two different points. To do this, it is convenient to define a Cartesian coordinate system
(z1,91,21) tangent to the Earth at the geographic position (#1, L1,a), with z; increasing
Eastward, y; Northward, and z; up. This will be referred to as a “Local Cartesian System”.

2-3
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The velocity in this system is represented by the components (uj,v1,w;) in the directions
(xla Y1, )

A velocity vector at a given geographic point (¢, L,r) is represented by components
(u,v,w), assumed to be given in the Local Cartesian System referred to the point (¢, L,a)
(directly below). It is required to relate the coordinates of points and the components of

vectors in one Local Cartesian System to those in another.

Define two intermediate coordinate systems. One is the rotating Earth-Centered Carte-
sian System (ECCS) (%1, 91, 21), where §; is along the rotation axis pointing toward the
North Pole, %) is in the direction of the meridian ¢;, and Z; ninety degrees East of this
meridian. The transformation between (¢, L,7) to (%1,¥1,21) is

%1 = r cos Lsin(¢ — ¢1)
1 =rsinlL (2.1)
%1 =rcos Lcos(¢p — ¢1)
The second is a rotating Cartesian Coordinate system (£1,91,21), with axes parallel to the
ECCS but centered on the position (¢1, L1,a). The transformation between these systems

18 R .
Iry =T

§1 =9 —asin L (2.2)
21=2% —acosl,
Then the system (z1,y1,21) is obtained from (&i1,§1,21) by a rotation about the &; axis,

according to

T =1 1= =
y1 = §1cos Ly — 23sin Ly 1= wyicosLy + z1sin Ly (2.3)
z1 = y18in Ly + 2 cos Iy 2y = —y1sin Ly + z3 cos In

All these systems are non-inertial, being attached to the rotating Earth.

Consider now a second Local Cartesian System, and corresponding intermediate systems

defined in the same way as the above, with all the subscripts “1” replaced by “2”. Then

transformation of the components of velocity referred to system “1” to components in system

“2” is done by
zz = a($2, Y2, Zg) :j: (2 4)
wy a(931, Y1, Z]) w1

where
oz dz dz
Narnynz) _ | om on om (2.5)
o(z1,y1,21) 0ry  Ovs Doy
1 Oy 7

W
e
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1s a Jacobian (matrix), and will be denoted by J5;. This matrix can be found by

where the suffix “g” stands for the geographic coordinates (¢, L,r). Reversing the subscripts
is equivalent to taking the inverse since the transformation matrices are orthogonal. It is
noted that Js5 and Jiji are just the identity matrices. Since Jo; transforms between two
Cartesian systems, its value is independent of position. This can be seen by calculating the

product of the inner four factors of (2.6) obtaining

cos(d1 — ¢2) 0 sin(¢y — ¢2)
Jp = Jéi"}ﬁg‘}gi'}ii =1 . 0 1 0 (2.7
S}n(gég - t,ﬁ}) 0 COS(Qél - ?52)
The transformation (2.6) is then
_ cos(¢1 — ¢2) —sin Ly sin(¢; — ¢2)
Ja = sinLysin(¢y —d2) cos Ly cos Ly + sin Ly sin Ly cos d1 — ¢2
—cos Ly sin(¢1 — ¢2) cos Ly sin Ly — sin Lj cos Lz cos(¢y — ¢ (2.8)

cos Ly sin(¢y — ¢2)
sin Ly cos Ly — cos L1 sin L cos(¢y — ¢
sin Ly sin Ly + cos Ly cos Ly cos(é; — ¢

As an example of the importance of this transformation, consider a missile at 30 degrees

N travelling due E at 1000 m/s. Relative to a Local Cartesian System based on a point one

degree further East, this missile has a Southward velocity of 8 m/s and an upward velocity
of 15 m/s.

2.4 Representation of Defended Areas

Defended areas are represented by ellipses with specified semimajor axes a, semiminor
axes b, centers (zo,y0), and directions ¢, of their lines of apsides (with ¢, € (—m/2,7/2)).
These quantities determine the eccentricities

i E oo

and the positions of their foci,

Tf1 = Tg — AECOS Py, Ty = To + aecos ¢,
) . (2.10)
Y51 = Yo — aesin ¢, Yf2 = Yo + aesin ¢,
The equation for the ellipse in polar form is
a(l — €?)
= 2.11
TEIC ecos(d — ¢,) (2.11)

2-5
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where (r,0) are polar coordinates relative to the point (zs;,y51). Either focus could have
been used. For (r,0) to represent polar coordinates relative to the point (z3,y2), the first
minus sign in the denominator of (2.11) is replaced by a plus. The area within the ellipse is

area = mab (2.12)

Each defended area j is assigned a “perceived value” per unit area, W and an “actual
g p ]

value” per unit area, W'j(“).

2-6
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CHAPTER 3

SIMPLIFIED ASCM TRAJECTORIES

It is necessary to prioritize engagements against threats in scenarios with a large num-
ber n of threats, and also a large number m of possible targeted assets. The amount of
computation for an engagement schedule needs to be kept within reasonable bounds. The
objective of each threat is not known, but the number of threat-objective pairs is of the
order of nm. Even if the objective were known, the threat trajectory is not. If all possible
trajectories are considered the amount of computing can easily grow unacceptably large for

only a few engagements. For this reason, the “Simplified Trajectories” approach presented

in this section is needed.

The information needed to prioritize the threats includes arrival times to all defended
assets. The arrival time to a given asset for a given threat is determined by a single simplified
hypothetical “Earliest Arrival Time” (ETA) trajectory. This trajectory is based on the
following assumptions:

¢ A maximum allowed lateral-acceleration magnitude, an,, is specified. This value can
be determined by intelligence data or classification based on imaging or past threat
behavior. A generic value is used if there is complete ignorance of the threat type. The

value a,, can be altered at any time additional information becomes available.

* A maximum allowed heading error (HE), ¢,,, is specified. The HE is the angle between
the threat velocity and the asset direction. The value @, attempts to represent the
limitation on the threat’s seeker geometry. Ideally, we would be concerned with the look
angle, i.e., the angle between the threat body axis and the asset direction. However,
the simple analysis proposed here treats the threat as a moving point, and consequently
there is no body axis to which to refer the look angle. The velocity vector serves as a
reasonable substitute, and thus the limitation ¢, is placed on the HE. As in the case of
@m, the value ¢, can be determined by intelligence data or classification based on any

available information, and can be altered during the course of the battle.
e Constant speed is assumed. This speéd is determined by the latest threat-state estimate.

It is evident that these assumptions require that the ETA trajectory lie on a single flight

3-1
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plane and consist of two segments, “primary” and “secondary”. The primary segment is
CTR with the maximum-allowed lateral acceleration a,,, terminating when the velocity is
directed toward the targeted asset. The secondary segment is CV to reach the asset. It will

be shown below that if the HE constraint is initially satisfied it will remain so.

There is also a “Latest Time of Arrival” (LTA) trajectory, defined as a single CTR arc.
It may be possible to artificially reduce the threat speed by applying a “maneuver factor”,
fm. As a guide for selecting fm, note that a planar weaving track consisting of alternate
CTR turns is longer than the corresponding CV track by the factor 1/ f,, = ¢/sing, where
¢ is the maximum heading error. Even though the LTA trajectory is not used at this time
for threat evaluation, it is included in our discussion both for general interest as well as for

providing the most natural limiting case for delayed arrivals.

The previous paragraphs define the two limiting trajectories including the exceptional
case when blind application of the trajectory rule drives the threat trajectory beneath the-
sea surface, as may happen in some cases with a diving threat. This case is taken up in
Section 3.3 and in Chapter 4.

Let 7, 7's, and 7o be the given initial threat and objective positions and threat velocity.
The vectors 7s — 7y and 7 determine the plane upon which the trajectory is assumed to lie.
On this flight plane, two very idealized trajectories are constructed. One is used to find an
approximate ETA, the other to find an approximate LTA. The former (ETA) is an important
quantity used in the threat prioritization. The latter (LTA) is of lesser interest.

3.1 The ETA Trajectory

It is self-evident that the trajectory allowing the soonest arrival will execute a maximum
acceleration magnitude arc until headed toward the objective and then fly CV (constant
velocity). While it is impossible to guess the threat’s intention, it can at least be said that

the arrival time determined by this ETA trajectory provides a lower bound for the arrival

time.
Consider first the maximum g arc. Let the center of curvature lie at the point
7o = 7o + AT + B(fo — 7s) (3.1)

where A and B are constants to be determined. The conditions determining these constants

are 2 2
l'f'{) - TCI = bm

7o (Fo—7c) =0

3-2
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These conditions determine the constants in (3.1) to be

B= 2 , A=10TTT0) (:ﬁ; ") p (3.3)
V2l = 7uf2 ~ [Fo - (7 — )2 f

If the radical in (3.3) is too small for practical computation, the direction of 7o is close to
the direction of #s — 7, (or in the opposite direction) and the entire trajectory can be taken
as CV. (A test should be performed to exclude the case where the directions are opposite
to each other, which normally is excluded by the HE constraint.) The two signs in (3.3)
determine points on the flight plane right and left of the threat’s directional motion. The
point lying closer to the objective is the appropriate arc center, and is determined by the
condition

(Fe—7To) - (Fs — 7o) >0 (3.4)

This condition selects the negative sign in (3.3).

Consider the point 7; where flight transitions from the arc to the CV segment. Movement

in the CTR segment can be represented by the formula
7(t) = 7o + w™ psinwt + w2 (1 - coswt) (3.5)
(see Groves et al, 1992 or 1994), where the subscripts “0” refer to the initial state, and

|7o]
|7o]

being the turning rate and b the turn radius. With a maximum “g” turn, the initial accel-

3

W =

‘l

SRS

(3-6)

2]

-y

eration is
s VE(Fe — 7o)
g = T
m
with by, = V,2/a.m, being the minimum allowed turn radius. If t¢ is the time when the threat

reaches the transition point, we have

(3-7)

7y =g + Vt“lbm?gsin wty + (1 — coswis)(7e — 7o) ‘ (3.8)
The condition
(Tt —=7c) (e —75) =0 (3.9).
requires that
C coswty + Dsinwt; = b2, (3.10)
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where

C = b2, — (Fe — 70) - (Fs — 70), D = V; Yoty - (75 — 7o) (3.11)

If
C*+ D? < b} (3.12)

there is no solution. Otherwise, the argument of the trig functions in (3.10) is given by either

of
a1 = wty =arccos (bfn/\/ C?+ DZ) —atan2(—-D, C)

g = wty = 2w —arccos (bfn/\/ C?+ D2) — atan2(—D, C)

These values are placed into the interval [0,27) by adding or subtracting 27 if necessary.

(3.13)

The smaller value is then used to determine #; from (3.8). At this point, 7 is tested to
insure that it lie above the sea surface (z; > 0). Otherwise the threat is unable to reach its
objective by the simplified trajectory under discussion here, and the possibility of a different

suitable trajectory is considered in Section 3.3 and Chapter 4.

It can be demonstrated that if the HE constraint is satisfied initially, it remains satisfied.

Consider )
7 (fs —7)
Vt'Fs - -"l

In a special coordinate system in which 7 is translated to the origin, rotated so that 7, =

(3.14)

cos ¢ =

(—bm,0) and the linear dimensions scaled by defining
zs =€/bm
’ (3.15)
Ys = 1/bm

and representing the (z,y) coordinates of a point on the CTR arc in terms of the polar angle,

z = cosb
y = sin® (3.16)
(3.14) becomes
cos ¢ = —¢€sinf + ncosb (3.17)

VE 4+ 12 4+1—2¢cosf +nsinf
The initial rate of change of (3.17) with respect to 8 is
VIE-1)2 + 773

Since for a valid trajectory the point (zs,ys) must lie outside the circle

-(;i—a[COS ¢]0=0

(@5 + bm)® + 37 = b,
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the relation
72 >1—(£+1)? (3.19)

must hold. Then the expression (3.17) is always positive for negative £ showing that ¢ is

always increasing. The situation at positive ¢ is irrelevant because in that case the CTR. arc

would turn in the opposite sense.

3.2 The LTA Trajectory

It is difficult to find an objective way to estimate how late the threat could delay its
arrival. A reasonable assumption is that he will not want to delay more than required to
execute a few evasive maneuvers. In any case, estimation of LTA is not as important as the

ETA, since it is not used for threat evaluation.

Define a rough LTA trajectory as consisting of a single circular arc on the same flight
plane as was used for ETA. This will provide an arrival time somewhat later than the ETA,

but perhaps not late enough. Further massaging may be done by subsequently applying a
“Maneuver Factor”.

Again representing 7. by (3.1), determination of the center of curvature is somewhat
different than for ETA because the radius of curvature b is not known a priori. The conditions
to determine 7, are

|7 — 7ol = |Fo — 7|2 = 2
7o+ (Fo —7e) = 0
requiring that the arc radius b be the same at the initial and final threat positions. These

conditions lead to the following linear equations in A and B.

(3.20)

VEA+7o-(fo—7)B=0

- (3.21)
20 - (Fo — o) A + 20 — Fol?B = |7 — 7 ?

After B and A are determined by (3.21), the arc radius b is given by (3.14), and the arc
length 65 is given by

cos By = (Fo — 7) - (Fs — 70) /b2 (3.22)

A test is now made to insure that the LTA trajectory thus obtained lie entirely above the
sea surface. The direction of the derivative (3.13) with 6, and 7; replacing 6; and 7; will be
downward in a “dry” trajectory. If this is not the case the LTA trajectory can be modified
to keep it out of the water (see Section 3.3). Examples of the ETA and the LTA trajectories
are shown in Figure 3.1 4
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3.3 Keeping the ASCM Above the Sea Surface

If the ETA trajectory as described above indicates flight below the sea surface, an al-
ternative “dry” trajectory is sometimes available (see Chapter 4). If the ETA trajectory
is entirely above the sea surface but the LTA trajectory is not, an alternative “dry” LTA
trajectory is possible. Whether or not the original LTA trajectory crosses the sea surface
is determined by examining the sign of the vertical velocity component upon arrival at the
target. If z; < 0, the final velocity is downward and the original LTA trajectory is ok.
Otherwise, a “dry” LTA trajectory is found as described below. ’

The modified trajectory will consist of an initial CTR segment followed by a terminal
sea-skimming CV segment. The point of transition between these segments is denoted by
7t. Both segments, and the transition point, lie on a flight plane containing the points 7
and 7, and oriented so that it contain the initial velocity vector 7. First, determine the
hypothetical “splash” point 7;, where the threat would hit the water if it continued in CV
flight from its initial state. This splash point is given by

7= — 20 (3.23)

20
(see Figure 3.2). It is evident that this splash point also lies on the flight plane. From
symmetry, it is seen that the distance from the splash point to the transition point is equal
to the distance from the splash point to the initial position. Call this distance a. Then the

transition point is determined by

Vizo

L a(f =)

¥t = ————=, where a = — 3.24
= R ol 29

The Pythagoras relation in the triangle OTS is
a? + 0% = |f; — 7 (3.25)

determining the radius of curvature b. This value should be no smaller than the allowed by,
in view of the fact that the ETA trajectory did not cross the sea surface. The arc length of

the CTR segment is then given by
6 = 2arctan(a/b) (3.26)
and the length of the CV segment is

s = |7 — 7 (3.27)
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SEA SURFACE

Figure 3.1. Geometry of the ETA and LTA Trajectories. The flight plane contains the
initial threat position “O” and velocity “V”, and defended point position “S”. The two
centers of curvature are indicated by “C”.

PN
4

SEA SURFACE

Figure 3.2. Geometry of the “Dry” LTA Trajectory. The impact point “I” is where the
threat would hit the sea surface if it flew an initial CV track.
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CHAPTER 4

SEASKIMMING TRAJECTORIES

4.1 The “Dual-Arc” Conjecture

This conjecture is related to finding an alternative simplified ASCM trajectory when
the ETA trajectory determined according to the process described in Chapter 3 is partially
under water. There are not many cases where this will occur in practice. But when it does,
as in some cases of diving threats, there will be a few instances where a valid trajectory can
be kept out of the water. Although this situation may occur rarely, it is safer to account for

this possibility than to ignore cases where an asset could be in Jjeopardy.

First, a definition:

A Valid Trajectory for a given expected initial state, targeted point, maximum allowed
heading error and lateral-acceleration magnitude (7%, '.;"'{}, Ts, $m, and ar,) is one consisting
of a number of CV and CTR segments terminating at the targeted point, with continuity of
position and velocity at the transition points between segments, where the speed is constant,
and z > 0 everywhere.

The Conjecture: If a valid trajectory exists, there will also exist a valid trajectory con-
sisting of two CTR arcs, the final arc lying along the sea surface. (Here it is understood that
CV is a special case of CTR.) We have been unable to prove this and invite any interested

reader to communicate his results to us if he is able to find a proof or a counter example.

Consider a flight plane of a primary arc, which contains the initial velocity vector 7y but
otherwise is unconstrained, allowing a one-parameter family of such planes. A Cartesian
coordinate system (&, 7, () is attached to this flight plane with its origin at the initial threat
position 7. Orthogonal unit vectors (t:;*'g’i/;"l}ﬁ,'t?) form a right-handed system and point
in the direction of increasing (£,7,(). The flight plane contains the vectors 7y and 7, is
perpendicular to %, and is characterized by the equation 7 = 0.

One parameter, A, determines the orientation of the flight plane according to the relation

U

dcos A — fBsin A

U=asin A+ fScos A

where (?OV‘I,CY, E) is another right-handed set of orthogonal unit vectors that obey the
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conditions
&-79=0, B-7fo=0, @ f=0, B-k=0, & k>0 (4.2)

According to these definitions, the unit vectors & and E are related to the Cartesian unit

vectors (;, 7 E) by

— (01 + 07) 20 + ViHk 3= §oi — o]
ViViho T Vao

Vio = \/ 23 + 13 (4.4)

A point on the flight plane having coordinates (£, () is located at

&= (4.3)

where

In other words,

The Cartesian components of (4.5) are

& = 2o + 5oV, 1€ + [—Hoosin(A) + PoVicos(N)]V; V!¢
y = yo + 90V, € + [~ozosin(X) — doVicos(N)]V; Vig'¢ (4.7)
z = 20 + 2V, 1€ + Viosin(A) V; ¢

Constant-speed flight in a circular arc can be expressed in the form
7(t) = 7o + Fow ™ Lsin(wt) + Ffow™2[1 — cos(wt)] (4.8)
(see Groves et al, 1992 or 1994) where
w = |7/I71 (4.9)

is constant. If the arc (4.8) is tangent at the sea surface, both z and 2 vanish there, and we

have

2(t) = 20 + 2ow ™ 'sin(wiy) + Zow2[1 — cos(wi)] = 0 (4.10)
2(t:) = ocos(wts) + Zow™ lsin(wt) = 0 .
at the instant ¢ = ¢; the threat arrives at the transition point 7; on the sea surface. Taking

linear combinations of (4.10), it is seen that

20 —Zow
2 )

<9 4.11
20 + zow ( )

sin(wtt) =

coslut) = Bt 20t

4-2



NSWCDD/TR-00/46

Summing the squares of (4.11) it is seen that

2 = 52 — 2205 (4.12)
is a condition that an arc on the flight plane meet the sea surface at a point of tangency.

Consider the problem of determining 7 7o from a given 7Y, rg, and A. The conditions (4.9),
(4.12), and the relation 7 - i = 0 give the equations

ToZo + Yoo + 20%0 = 0
UzZ0o + UyYo + uz3p = 0 (4.13)
2 (55 + 58 + ) + 2V 2050 = BV
Eliminating %o and #o from (4.13) gives a quadratic equation in Zg that may or may not
have real solutions.

If the initial lateral acceleration magnitude l?g] (and hence the radius of curvature b =
V2/|Fol) is given instead of A, then 4 is unknown and instead of (4.13) the initial acceleration
is determined by solving the equations

G030 + dodo + 20% = 0
2V 2030 = BV — Rfol? (4.14)
&S + 95 + 7 = |Fof?

Consider (4.14) in the space of the acceleration components. The three equations rep-
resent, respectively, a plane through the origin, a plane parallel to the (Zo,%0) plane, and a
sphere. The intersection of the plane through the origin with the sphere occurs at values of
Zp contained in the interval )
ViolTo|

Vi
If the value 29 determined by the second equation of (4.14) lies in this interval, then a real
solution exists. This condition requires that

Vi — %} <%+%ﬂ

|20] < (4.15)

4.16
20 - (4.16)
The equation in Z¢ obtained by eliminating 7 from (4.14) is

Vibid + 2a230%0 + 53 (i + 52) — |22 = 0 (4.17)

This equation has real roots (for %) if (4.16) is satisfied. Then the flight plane () is obtained
by getting ’
7 = 7o/l
cosA=f.7 (4.18)

sinA=a&-v
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Consider all the possible flight paths that could serve as the primary arc without consider-
ation, for the moment, of the position of the targeted point. Figure 4.1 is a three-dimensional
plot on an arbitrary scale of such an example in which a one-dimensional family of candidate
trajectories is shown leaving the initial threat position. The trajectories displayed corre-
spond to values of w at equal increments between the limits (4.16). Each arc is tangent to
the sea surface at a point indicated by a dot. These points of tangency lie on a circle, as will

now be demonstrated.

Let us introduce a “Special Coordinate System” (SCS) on the sea surface, with coordi-
nates (£,7), so that the SCS origin is under the initial threat position, with the £ axis in
the direction of the initial horizontal velocity. With respect to the heretofore used “Basic
Coordinate System” (BCS) on the sea surface with coordinates (z,y), the two systems are
related by

E= (z—=zo)cos A+ (y— yo)sin A, z— 29 =~Ecos A —nsin A (4.19)
7= —(z — zo)sin A + (y — yo)cos A, y—yo = &sin A + 7 cos A '
where ) is the azimuth of the initial horizontal threat velocity in the BCS,
A = atan2(vp, up) (4.20)

Equations (4.10), (4.11), and (4.12) determine the coordinates of the point of tangency in

the SCS, giving

_ —%oéo +§o2ZO’ — 7020 - (4.21)
29 + zpw 2p + zpw

It is convenient to use w as the parameter that selects one out of the family of arcs. The

initial acceleration is determined by (4.9), (4.12), and the orthogonality of the acceleration

&t

and velocity vectors. The result is
bo = —30(% — 24w?) /22060
o = £Viyfu? — (5 — /43 (422)

5= (38— z8w?) /220

Substituting these values into (4.21) we obtain the equation of the curve passing thru the
points of tangency on the sea surface in terms of the parameter w. Eliminating w by first

expressing it in terms of &,

. >2 22 4 £
2 _ 20(22088 + 2055 + Eo2oét) (4.23)

22 (2020 — &o&t)
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after some rearrangement gives
Loy 2
212
2 25 V;
n; + (& + ———E&’) =t (4.24)
<0 20

demonstrating the circular nature of the locus of tangency points, and determining the center
and radius. Note that the center of this tangency circle, according to (4.24), is just the point

on the sea surface where the threat would impact if it continued in a CV trajectory from its
initial condition.

Just as amusing is the fact that the velocity at the points of tangency is directed outward
from the center of this “tangency” circle. This velocity is

Ty = Tocos wiz + ?gw_l

sin wty (4.25)
according to (4.8). Combining this with the conditions (4.11) gives

| . oo — #oko . 070
| =05, = 4.26
o Z0 + zow? T T G + zow? (4.26)

Using the relations (4.22) and (4.23), it can be shown that

:D —.@—O

Py = 4.27
where g is the vector from the center of the tangency circle to the point of tangency, given
by )

F
5=+ 20 (4.28)
20

These vectors are shown on an arbitrary scale on the plane of the sea surface in Figure 4.2 for
the arcs of Figure 4.1, where the initial threat position projected down onto the sea surface
is indicated. The points of tangency are indicated by the dots.

Returning to the BCS, a targeted point 7, is added to the example of Figure 4.1. To
find the secondary segment of the dual-arc trajectory, use the sea surface as the complex
plane, since the segment sought lies on this plane. To find the arc center for the segment
continuing from any transition point 7, note that its complex value is

We = W; + bell#+7/2) (4.29)

where b is the (signed) radius of curvature and W is the position of the transition point,

and ¢ is the argument (direction) of the final velocity of the primary segment. The radius b
is to be determined by the condition

[We — Wl = |W, — W,J? (4.30)
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This equation gives the value

_ W¢W: + WtWt* - WtW; - WeWt*

= W = Wt*)ei(¢+7r/2) + (Ws — Wt)e—i(¢+7r/2)
thFs - Ft|2

9y X (7 — 7))

b
(4.31)

Since both factors in the cross product of (4.31) lie in the (z,y) plane, the product is in the
+k direction, where k is in the upward direction. If the product is in the +k direction the

turn is toward the left, and vice versa. The length of the arc is given by
0. = arccos|b™ (7} — 7o) - (s — 7e)] (4.32)
Points along this secondary arc are conveniently computed using equation (4.8).

Consider the limiting simplified trajectory, either ETA or LTA, of Chapter 3, whose
transition point is on the sea surface. This trajectory will lie on a single flight plane, while
the dual-arc trajectories generally lie on two flight planes. To determine the single-plane
limiting trajectory, find the “impact point” 7; on the sea surface if the threat were to fly CV
from its initial position. This point is given by

R =70 — (f'i) 7o (4.33)

20
Referring to Figure 3.2, it is evident from symmetry that the transition point 7; is given by

Te = Ti + M(Fs - 7%) (4.34)

I"—'ie - Fi'

Figure 4.3 shows a plan view of the single family of dual-arc trajectories as solid curves
on an arbitrary scale, plus the limiting simplified trajectory shown by the dashed curve. The
trajectories have been projected vertically onto the sea surface. The dots indicate the points
on the dual-arc trajectories where the primary segment is tangent at the sea surface. The
portions of all the trajectories lying outside these tangent points are on the sea surface, while
the portions inside these points are above the sea surface. The secondary arc is shown only

if the heading error at the transition point does not exceed 7 /2.

If a dual-arc trajectory is needed, the dashed limiting trajectory must require a lateral
acceleration in excess of the allowed maximum value. It is apparent in Figure 4.3 and similar
cases, that there is a dual-arc trajectory (one of the solid curves) in which the maximum
lateral acceleration is less than that in the single-segment (dashed) curve. Thus, there exist
valid dual-arc trajectories in some cases for which the usual simplified ASCM trajectory

would require the threat to fly under water.
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Figure 4.4 shows in perspective on an arbitrary scale a family of possible primary arcs
for an initial threat velocity that is somewhat downward. The dots at the ends of these arcs
lie on the tangency circle on the sea surface.

Examples of other possible dual arc trajectories are shown on an arbitrary scale in Figures
4.5,4.6,4.7, and 4.8.

4.2 Dry Trajectories

Consider the “Tangency Circle Coordinate System” (TCCS) in which the origin of the
coordinates (X,Y’) is at the center of the circle, and the targeted ship is at (X,Y) = (|Fs —
7c|,0). The Y axis of the TCCS intersects the ¢ axis of the SCS at an angle o given by

o = atan2[({ — &), —s) (4.35)

where 7 is the center of the tangency circle and 7, is the position of the targeted asset. The
transformation between the SCS and the TCCS is

§— & =Ycoso+ Xsino, X = —-ncosag+ (£ — & )sino

: : (4.36)
7=Ysinoc — X coso, Y = gsinc+ (£ —&)cosa

The relations between the three coordinate systems are shown in Figure 4.9. Starting with
the original BCS represented by the (z,y) axes, the SCS is determined by the position of
the threat at point T with horizontal velocity in the direction of C. The ¢ axis is along the
line TC, which makes the angle A with the z axis, with the point C being determined by the
offset of the center of the tangency circle indicated in (4.24). The SCS origin is at the point
T. The TCCS then has its origin at the tangency circle center, C, with the X axis toward
the targeted asset position S. The Y axis intersects the € axis at an angle 0. The locus of the
secondary arc centers is the line parallel to the Y axis, as will be shown below, intersecting
the X axis at the point P. The location of P is given by (4.42).

We can assume that the targeted asset lies outside this tangency circle. Otherwise, either
a valid simplified trajectory would reach the asset, or no valid dual-arc trajectory would reach
it. In either case, there is no need for a dual-arc trajectory.

Position on the tangency circle, 7, is specified by the angle 8 measured counterclockwise
from the direction of the targeted asset, according to the relation

7a(B) = Fe + be(icos B + T sin B) (4.37)

where here 7 and 5 are unit vectors in the X and Y directions, and b, is the radius of
the tangency circle. Recall that the threat velocity at a point on the tangency circle is
perpendicular to the circle.
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The secondary arc begins at 7,(f) and ends at 75 in a circular arc. Let 74.(8) be the

center of this arc. The relations

IFs = Fac(B)| = |7a(B) — Tac(B)| = b2(B)

. - . _ (4.38)
[fa(B) — Tac(B)] - [Fa(B) —7c] = 0
determine 74c(8), where by is the (unspecified) arc radius. Let
Fac = Fc + AF(‘ + BFS (4-39)
where A and B are to be determined by (4.38).
In terms of the TCCS coordinates X and Y, (4.38) becomes
2be(be — Xscos B)A + 2Xs(becos B — Xs)B = b2 — X2 (4.40)
Abe + BXcos B = b, '
giving
— (b2 2 _ 2
Ao 2bcXs — (b: -{.-g{s)cos,B’ B - b2 2chsc.o;ﬁ + X; (4.41)
2b. X sin“f3 2X2sin“B
The locus of the secondary arc centers is then
b2 + X2 2bcX s — (b2 + X2)cos B
Xac = 2Xs ' Yoc = 2X¢sin 8 (442)

according to (4.39). It is seen that this locus is a line because X is independent of j.

The geometry of this secondary-arc construction is shown in Figure 4.10 as a family of
possible arcs. The dashed circle is the tangency circle. The threat position is generally not
at the center of this circle. The dashed line is the locus of arc centers.

Consider the region of the tangency circle permitted by “g” constraint. For the moment
we shall ignore the constraint on Heading Error and consider only how the limitation on
the maximum allowed lateral acceleration magnitude limits the possibilities. Representing

(4.16) in terms of the radius of curvature, b;, of the primary arc, there is the relation
ba < b1 < by (4.43)

where
2oVi 2V}

= R b, =
¢ Vit Vo * " Vi Vho
If b,, < b, the simple trajectory will generate a transition point 7; above the sea surface,
and there is no need to consider the dual-arc trajectories. If b, < b, the threat cannot turn

(4.44)
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sharp enough to avoid the sea surface regardless of how he orients his flight plane, and thus

no dual-arc trajectory is possible. The remaining case is where
bo < bm < by (4.45)

There always exist valid trajectories for the secondary arc, because the arc from the
point on the tangency circle nearest to 7 is a straight line. Moving along the tangency circle
in either direction the associated arcs reach a minimum radius of curvature, then again get
larger without limit. The arcs with minimum radius of curvature have their center on the
line between 7. and 7s. The radii of these arcs is given by

X:—0 _ |Fs— 72— b2
b = = T g 7 (4.46)

This is the minimum radius of all the possible secondary arcs. If by, < bo, the secondary arcs
departing from any point on the tangency circle are valid. If by, < bm some are not valid.

To find the points (Xom, Yom) on the tangency circle corresponding to the arc of minimal
radius, the conditions

(X2m - a€)2 + YQQm = b%m
Xé?m + Y‘i’zm = b%

determine two points on the tangency circle.

(4.47)

The situation is described by Figure 4.11, which again depicts the plane of the sea surface.
The point “T” is the projection of the threat position, “S” is the targeted ship, and “C” is
the center of the tangency circle. If condition (4.43) holds, there is a segment of the tangency
circle associated with valid trajectories in the primary arc. The points “B;” and “By” denote
the points of tangency of primary arcs having the limiting radius of curvature bm, and are
determined by (4.21) and (4.22). If the maximum allowed turning rate, w, = V; /bm, satisfies
(4.16), then the two final primary-arc positions on the tangency circle are determined. The
corresponding values 8 and 2 divide the tangency circle into a permitted and a prohibited
arc. The permitted arc is identified by the fact that it must include the angle B, =7/2— 0o
(see Figure 4.9).

The dashed line perpendicular to CS is the locus of arc centers for possible trajectories
in the secondary arc. The points “P1” and “P2” are where the secondary arc of minimum
radius intersects the tangency circle, and has coordinates (Xom, Yam) as determined by (4.47).
There are two solutions, which determine the two points. The center of this arc is the point
“P”. if bom > by, then all the secondary arcs satisfy the “g” constraint. If bom < by, the
secondary arcs arriving at the tangency circle in the vicinity of the points “P1” or “P2”
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require a turn sharper than allowed. In this case, to find the secondary arc having the radius

of curvature by,, consider the conditions
(Xm — Xac)? + (Ym — Ya)? = b, (4.48)
X2 4+Y2 =1 '

where Y;; is the (positive) coordinate of the point C1 in Figure 4.11, given by the relation
Yc21 + (Xs - )(cu:)2 = b?n (4.49)

If there is no real solution for Y¢;, then all the possible secondary arcs satisfy the ‘g’ con-
straint. Otherwise, there are two solutions to (4.48), (Xm1, Ym1) and (Xme, Ymea), with Y1
and Y9 having opposite signs. Define Yy,) as the negative solution. Then the azimuth

angles on the tangency circle where these secondary arcs impinge are given by

v1 = —atan2(Ym1, Xm1
(Y1, Xm1) (4.50)
T2 = atan2(Ym2,Xmg)

with both values being positive. Secondary arcs arriving at the tangency circle within the
arc “—vg to —y;” or within “y; to 42” have radii less than allowed, and accordingly are not
valid. The remaining points along the tangency circle have secondary arcs that satisfy the

‘g’constraint.

Consider the region of the tangency circle permitted by HE constraint. Figure 4.12
shows the tangency circle and the plane of the sea surface including the targeted ship “S”,
the projection of the threat position “T”, the center of the tangency circle “C”, and the line
(dashed) locus of the secondary-arc centers. Consider a secondary arc whose center is denoted
by “Cyn”. It is evident that the HE along this arc is greatest where this trajectory departs
from the tangency circle. If this angle is equal to ¢, the maximum allowed HE, denote
the azimuth angle 8 on the tangency circle where these limiting secondary arcs intersect the

circle by —fp, and Bn.

Denote the TCCS coordinates of the lowest of the pair of critical points by (Xm, Ym),
given by
Xm = bC CcOs IBm, Ym = —bc Sinﬂyn (4.51)

where b, is the radius of the tangency circle. Note that the angle at S subtended by the
points C and —f,, is equal to ¢, — . Accordingly, there is the relation

_ bcsin By
tan(d)m - ﬁm) — Xs _ bc cosﬂm (4.52)
or
¢m = Bm + atan2 (b sin B, Xs — be cos ) (4.53)
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Taking the tangent of both sides and rearranging gives a quadratic equation in sin S,
X2sec?pmsin® B + 2Xsbetan dsin Bm + (b2 — X2)tan?p, =0 (4.54)

The discriminant of this equation is

V/4X2tan26, | (X2 — b2)tandn + X2 (4.55)

and is always real for a targeted ship outside the tangency circle (i.e., Xs > be). It is also
seen that the largest root is always non-negative. After obtaining sinf3,, from (4.54) the
appropriate quadrant of Sy, is found using (4.53), giving B, on [0, 7).

The arc from the point labeled 8, to S is obtained by symmetry. The permitted region
of the tangency circle under the HE constraint is the arc between —Bm and fy,.

Consider now the HE constraint on the primary arc. The geometry is complicated in the
general case, and therefore the following simplifying assumption is made. This assumption
can be phrased in the form of a conjecture:

If both the initial and final HE of the primary arc satisfy the HE constraint, the HE at
all points of the arc satisfy the constraint.

It may be possible to show that this conjecture is true, although we have been unable
to do so. However, if there are some unlikely cases where the HE constraint is violated
somewhere along the primary arc even though the constraint is satisfied at the end points,
the HE there will only slightly exceed the allowed limiting value. The HE at the end of the
primary arc is the same as at the beginning of the secondary arc. Therefore, the permitted
region of the tangency circle is the arc 8 € |8y, fs).

Figure 4.13 shows how the geometry of Figure 4.11 determines the regions of validity. A
point on the tangency circle determines both the primary and the secondary arc. Regions of
this tangency circle are mapped into the angle 3, measured counterclockwise around the circle
from the point nearest to “S”. In Figure 4.12, S along the tangency circle has the values
indicated by the point labels. Figure 4.13 depicts a situation with the most complicated
region of valid trajectories, namely, three disjoint intervals. Other situations will correspond
to two intervals or a single interval.
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CHAPTER 5
REGIONS OF ASCM ACCESSIBILITY

In accordance with the assumptions defining the simplified ASCM trajectory, the threat
1s not allowed to reach points whose heading error exceeds ¢, nor requiring a turn of radius
less than bp,. The first requirement restricts the Region of Accessibility (RA) to the interior
of a circular cone whose vertex is at the current expected threat position and whose axis is
directed along the expected threat velocity. The second condition excludes from the RA the
interior of a torus to be described below.

It should be emphasized that the current RA relates to the current threat state. One
might think that the RA at a subsequent time would be contained within the earlier RA,
but this is not necessarily so. At any time the RA only represents the region accessible to
simplified trajectories determined by the threat state at that time.

Consider the conical region. A point 7 is in the allowed conical region of the RA, as in
Figure 5.1, if .
——-——F‘(FS_F) > cos ¢ (5.1)
VIfe—r| ~ ‘
where 7 = (z,y,2) and 7 = (u,v,w) are the current expected position and velocity of the
threat and V = ]Fl For a point on the sea surface, #s = (z5,9s,0), the condition (5.1)
imposes the constraint

A& + B&m +Cnj + D&+ Em +F > 0 (5.2)
where ¢
1=Tsg—
) (5.3)
Mm=Ys—Y
and
A=u?— Vzcesggbm D = -2uwz
B = 2uv E = -2vwz (5.4)
C = v? = V2o, F=2w? - V2cos?¢m)
The terms linear in £; and 7; can be eliminated by the substitution
fi=af+bn+e
! ™1 (5.5)
m=cl+dn+ f
and setting

2Aae + B(af +ec) + 2Ccf + Da+ Ec=0
2Abe + B(bf +ed) + 2Cdf + Db+ Ed =0

5-1
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These relations underdetermine the coefficients a, b, ¢, d, e, f. Unless the transformation (5.5)
is degenerate we can set b =0 and ¢ = 0 to get

2Ae+ Bf =0

5.7
Be+2Cf+E=0 (5.7)

to determine e and f. The coefficients @ and d are left undetermined, and for convenience

they can be set equal to one. Then (5.2) becomes
AL + Bt +Cn*+G >0 (5.8)

where

G=Ae?+Bef +Cf+ De + Ef + F (5.9)

The case where (5.7) does not provide valid values for e and f requires special treatment
that is not described here.

The matrix of the quadratic form (5.8) is

_(A 2B
X_(%B A) (5.10)

Let V be the matrix whose columns are the normalized eigenvectors of X. Then the trans-

G)=v(): ()= (5.11)

gets rid of the product term and gives
Hzl+Jy2+G >0 (5.12)

formation

where
H = AV} + Bi1Vi2 + CV

5.13
J = AV} + BV Vs + CV (5.13)

Consider the toriodal region. This is the region inaccessible to the threat because it
cannot turn sharp enough to enter. This toroidal region is determined by given values of 7,
7, and by,. The axis of the torus is a circle of radius by lying on the plane perpendicular to 7
with the point 7 at its center. Each point on this axial circle is the center of another circle of
radius by, that lies on the surface of the torus in the plane perpendicular to the axial circle.

These circles generate the torus.
If 7, is a point on the axial circle of the torus, then the relations
[fa — 7| = bm
Fe(fa—7)=0

5-2
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must be satisfied. It is convenient to define two special points (Tao and 7q1) lying on the
axial circle. Let 759 lie at the top of the axial circle, and #,; lie on the axial circle ninety
degrees clockwise from 79 relative to the direction of 7. The point 75 is represented by

a0 = 7+ of + Bk (5.15)

and must satisfy (5.14). Accordingly, the constants « and 8 must satisfy

%4 =0
L, o wh \ (5.16)
Via? + 2waf + B2 = b2,
The point 74 is represented by
Fa=F+ai+p] (5.17)
redefining a and 3, which are now determined by the relations
va+vf=90
9 2 32 (5.18)
o’ + B° = b,

It is convient to let 7 be a parameter that selects one of the points 7, on the axial circle,
and we thus set

Ta =7 4 (Ta0 — 7)cosy + (Fa1 — F)siny (5.19)
Then every v € [0,27) generates a circle on the toroidal surface. Each circle can intersect
the sea surface at zero or two points. If 7, is one of these points, there is the relation
[Ty — 7a| = b
Fap - (Fy = 7a) = 0 (5.20)
Py =230 + Yp)

(defining zj and y;), where 75, is a unit vector at 7, along the axial circle. It can be found
by taking the derivative of (5.19), giving

Tap = [—(Fa0 — F)siny + (a1 ~ 7)cos 7]/ bm (5.21)

Figure 5.2 illustrates the RA in a typical case. The expected threat position is indicated
by the star (between the two circles), and its velocity is directed along the dashed line,
which is the axis of revolution of the figure. The HE restriction defines the conical surface
represented by the two lines that would intersect at the threat position. The toroidal region,
represented by the two circles, is inaccessible to the threat because of limitation on its lateral
acceleration magnitude (the “g” limitation).

Figure 5.3 illustrates the intersection of the RA of Figure 5.2 and the sea surface for a
typical case where the threat is initially diving. The region of the sea surface in the torus

5-3
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is shaded. The expected threat position is indicated by the star. The projection of the
axial circle of the torus onto the sea surface is dashed. The array of dots lying just inside
the dashed curve are those points on the sea surface where the simplified ASCM trajectory
would arrive at a point of tangency. The dots are at equal increments of the turning rate in
the hypothetical simplified trajectory. The outer solid curve indicates the boundary of the
conical region. The RA consists of the unshaded region inside this solid curve. However,
this RA includes a subregion reachable only if the threat is able to fly under water. The
simplified trajectories reaching this subregion would lie under the torus. The boundary of

this “wet trajectory” subregion is not indicated.

For a given threat it is interesting to consider those regions of the sea surface where the
threat can and cannot fly. For a given threat state and the given “g” and HE constraints,
the preceding sections give rules that can indicate whether a given point on the sea surface

can be reached.

Figure 5.4 shows several regions on the plane of the sea surface for a threat with an initial
altitude of 1600 yds, horizontal velocity of 500 yd/sec, and vertical velocity of -600 yd/sec.
The dive angle is arctan(600/500) or approximately 70 deg. The maximum allowed lateral
acceleration is taken to be 15.8 “g” units, giving a minimum allowed arc radius of 3600 yd.
The maximum allowed HE (¢r,) is taken as 50 deg. The asterisk shows the projection of the
initial threat position onto the sea surface. The solid circle is the “Tangency Circle” of the
seaskimming trajectories.

Regions 3 and 6 are inaccessible because of the “g” constraint, and together represent the
intersection of a torus with the sea surface. Regions 6 and 7 are inaccessible because of the
HE constraint, and together are bounded by a conic section. Regions 1 and 2 are accessible
by the “Simple Trajectories” described in Chapter 3. Regions 2 and 5 are accessible by the
“Seaskimming” trajectories described in Chapter 4. The region accessible under the stated
assumptions and constraints therefore consists of the union of regions 1, 2, and 5.

Regions 4 and 5 would be accessible by a “Simple Trajectory” if flight under water were
allowed. Region 7 is accessible under the “g” constraint, but violates the HE constraint and
the condition that flight must occur only in air (the “dry” constraint).

Figure 5.5 represents the same conditions as Figure 5.4 except that ¢, is 50 deg. The
regions identified in Figure 5.4 are present in Figure 5.5, but now there is a new region.
Region 8 is accessible under the “g” constraint and satisfies the “dry” condition but violates
the HE constraint.
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Figure 5.1. Region satisfying the HE constraint: the cone radially symmetric about the *
velocity vector V indicated by shading.
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sfying both the HE and the “g” constraints is radially syMetrié

Figure 5.2. The region sati

The shadowing shows a section of this region about the axis of

about the velocity vector.

symmetry.
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Figure 5.3. The Accessible Region on the Sea Surface.
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CHAPTER 6

ASCM DRAG LOSS

The simplified threat trajectories being used for threat evaluation consist of CV and
CTR segments. The drag and lift are approximated by

Fp=xVZ(Cpo+ KC}), Fr=rV2Cy (6.1)

see, for example, Etkin, 1972) where & is 1pS. The balance of forces on the threat body is
2
represented by

mf = Fp + Fy + Ty, + m§ (6.2)
where
- Fp=-Fp#/V,, Fp=Fpi, Th=Tw/V, §=—gk (6.3)

The lift is in the direction of the unit vector, #, which at the moment is undetermined.
However, it must be perpendicular to # in addition to having unit length, and therefore is

specified by only one additional constant.

The thrust, T}, needed to keep the threat speed constant is just an artifact of the
simplified dynamics and has no meaningful importance. It is approximated by taking it in
the direction of the threat velocity instead of along the body axis. The purpose of this term
is to avoid the necessity of considering the body orientation. The effect of thrust is neglected
because in the first place it is unknowable, and secondly because the gain in energy resulting
from any actual powered flight incurs a corresponding cost to the threat.

It may seem plausible to omit gravity in (6.2) since it would seem to contribute equally
to a gain in kinetic energy and a loss in potential energy as the threat descends. However,
these two effects do not cancel. Gravity requires a compensating lift, which is obtained by an
appropriate angle of attack that also affects the drag. Accordingly, gravity must be included
in (6.2). Furthermore, it is not necessary to account for the gravitational loss in potential

energy because this loss is independent of the trajectory shape.

The problem is to determine the total drag loss from a threat trajectory with given s:"(t)
and 7(t). The drag as well as the other quantities can be found from (6.2) and (6.3) by scalar
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multiplication of (6.2) successively by 7,7, @, and k to get

0= —kV3(Cpo + KC%) + T4V — mgv, (6.4a)

m|r|? = kV2CL (@i - 7) — mga, (6.4b)

m(@ - 7) = kV2CL — mgu, (6.4¢)

ma; = —kVi(Cpo + KC¥)v, + kV2Cpu; + ThV, v, — mg (6.4d)

where the v,, a,, and u, represent the z components of #, 7, and #. The quantities not yet
determined are T}y, u., (U ;"), and Cf. Only three of the four equations (6.4) are independent,

but also only three of the four undetermined quantities are independent.

6.1 The CV Segment

The acceleration is set equal to zero and only three of the equations (6.4) are meaningful.
Because of the loss of one of the equations (6.4) the CV case is not a special case of CTR

and is treated separately. The quantities T} and (E - @) are eliminated from (6.4) to obtain

o2 = mg[l — (v2/V;)?] — 26CpoV;v,
L 2k KViv, + £2(mg)—1V2

(6.5)
The drag is then .
Fp = kV#(Cpo + KC}) (6.6)

with Cp as given by (6.5). The quantity (6.6) is constant if variation in air density is
neglected. The total drag loss is just F)p times the length of the segment.

6.2 The CTR Segment

The quantities (i - 7), Th, and (k - &) are eliminated from (6.4) to obtain

0= ™ (vt 1 ogita, + g2 [1- 2 (6.7)
L= I€2b2‘/t4 i goa; + g ‘/tz .
A real solution is obtained if (6.7) is positive. Note that
ien(C2) = sign { v [14+ 2% 4 g2 |1 — 22 6.8
sign(Cy) =sign V" |1+ —5-| +g ~ve (6.8)

where a is the acceleration magnitude. The second bracket is always non-negative. While

the vertical component a, is often negative, there is a wide range of circumstances where
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the first bracket is non-negative, or if it is negative it could be dominated by the positive

second bracket. However, the exact criterion for a real solution seems complicated.

The drag is then given by
2 2
_ 2 m K 4 2 212 v
F})—&I’; CB{]-{-;W(K +2g6 az—i-gb [1—f§:') (69)

The energy lost during the entire trajectory is
Lo = ] Fpds (6.10)

where ds = df/b is the incremental path length and the integration is over the entire CTR

arc.

In a CTR segment the threat position is given by (3.5), from which the velocity and
acceleration are seen to be

= Fpcos wt + w(7, — 7o )sin wi

7
) . (6.11)
7 = —wrpsin wt + wz(f"c — 7o )cos wt

The total loss is obtained by the integral (6.10) over 8 from 0 to 8;. Neglecting the variation

in air density (keeping & constant), the integrals of the time-varying parts of (6.9) are
7]
/ azdt = vy(coswis — 1) + w(z, — 2p)sin wi; (6.12)
0
and

t
f vidt = %{vf,} + w?(2ze — 20)Hts + %w_l{vgg — w?(ze — 20)?sin 2wt (6.13)
0 *

+ 3020(2c — 20)(1 — cos 2wt;)
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CHAPTER 7

THE TBM TRAJECTORY

7.1 Introduction

ASCMs are evaluated by estimating an Objective Probability for each threat-objective
pair by constructing a simplified trajectory from the initial threat position to the objective.
Many alternative simplified trajectories were possible because ASCMs can maneuver by
using aerodynamic forces. On the other hand, our treatment considers a TBM as incapable
of maneuver. Its impact point is therefore predetermined by its initial threat state and its
physical characteristics such as drag coefficient, etc. The uncertainty of its impact point

arises from uncertainties in these physical characteristics and errors in the estimation of its

initial state.

The length of TBM trajectories is not negligible compared to the Earth radius, and
consequently it is advisable to use geographic rather than Cartesian coordinates. The time
interval between establishment of firm track and impact is long enough that earth rotation
needs to be considered. This could be accomplished by bringing the Coriolis force into the
dynamics. Here, we use the simpler approach of using nonrotating coordinates and allowing
the earth to rotate under the trajectory during the time in flight. To do this, the initial E
velocity component is adjusted for Earth rotation to obtain the threat velocity relative to

an inertial (nonrotating) system.

Assignment of Objective Probabilities is effected by determining an impact “footprint”
on the Earth’s surface. This footprint is the two-dimensional PDF of the impact point. To
simplify the calculations, the expected impact point is determined by the ezpected initial
threat state along with the best estimates of the threat’s physical characteristics. The
footprint is assumed to be a Gaussian function whose covariance is determined by several
simplifying assumptions.

Oblateness of the Earth is neglected and we use the right-handed spherical geographic
coordinates (¢, L, r) representing East Longitude, North Latitude, and radial distance. The
threat velocity is expressed by components (u, v, w) having the dimensions of L/T in the three
coordinate directions. Note that these components are neither covariant nor contravariant.

Also, it is understood that u has been adjusted for earth rotation. That is, (u,v,w) are the
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components in the celestial (inertial) system. The only difference between the celestial and

the geographic coordinates is in the longitudinal or E components, which are related by
d=¢g+ 0, u=ug+alcoslL (7.1)

where the subscript “g” denotes the geographic coordinate or component, and Q is the
angular speed of the Earth rotation, equal to 27 per sidereal day. The celestial longitude
¢ is referred to a datum fixed on the celestial sphere. At the initial time the celestial and

geographic coordinate systems coincide.

The complication of atmospheric reentry on a rotating, spherical Earth, is avoided by
adjusting a Keplerian orbit. Instead of introducing the Coriolis force into the dynamics,
Earth rotation is considered by carrying out the calculations in the celestial (inertial) frame.
The effect of aerodynamic drag on a planar trajectory with a flat Earth is used to adjust the

impact point and flight time.
The following steps are performed:

e Use the expected initial threat state relative to an inertial system. This is done by
just adding af2 cos L to the Eastward velocity component relative to the rotating Earth.
Calculate the arc length, 6., and flight time, T, to the impact point on the surface of the

spherical Earth assuming a Keplerian orbit. Drag and Earth rotation are not considered.

e Carry out the same calculation in Cartesian Coordinates on a plane with a flat Earth.
Find the distance Xy and flight time T to the impact point assuming a parabolic tra-

jectory. Drag and Earth rotation are again neglected.

e Carry out the same calculation in Cartesian Coordinates on a plane with a flat earth, but
this time consider the drag force in an exponential atmosphere. Integrate the dynamic
equations numerically to find the distance X, and flight time T, to the impact point.

The lift force is considered to be zero.

o The quantities X; — Xy and T4 — Ty provide a correction for drag that would be cum-
bersome to obtain in spherical coordinates. Find the corrected arc distance and time of
flight,

0=26.+ a_l(Xa — Xo)

(7.2)
T=Tc+(Ta“T0)

o Calculate the impact point in the Celestial Coordinate system based on the expected
initial threat state relative to an inertial system, using the corrected flight distance 6
and flight time T'.
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» Get the (rotating) geographic coordinates of the impact point. This is done by just
subtracting aQ2T'cos L; from the Celestial East longitude of the impact point.

e Use Cartesian coordinates on a nonrotating, flat Earth and parabolic orbits to calculate
the (2 by 2) covariance matrix of the footprint PDF on the Earth surface from the (6
by 6) covariance matrix of the initial threat-state errors. Uncertainties in knowledge of
the threat characteristics (drag coefficient, etc.) are included to increase the footprint
covariance.

e Assume a Gaussian footprint on the Earth’s surface having the expected position and

covariance as obtained above.

The last two steps are described in Chapter 8.

7.2 The Keplerian Orbit

Refer to Figure 7.1. With the simplifications described above the arc length 6 between
the initial threat geographic position (¢, Lg) and the impact point (i, L;) depends only on
the initial threat speed Vp and flight-path angle 49. This relation is given by Regan and
Anandakrishnan (1993, equation (6.34)) as

\ = 1 —cosl
(ro/Re)cos2+y — cos(8 + 7o )cos 7o

(7.3)

where rg = a + zp is the initial threat radial distance, @ is the Earth radius, R, = a + z; is
the radial distance of the impact point, and
_ Vn

A , = goa® 74
p K= go (7.4)

where go is the acceleration of gravity at the Earth surface. The parameter A determines the
trajectory type. For the suborbital trajectories of interest, A € (0,1). Solving this equation

for 6 by representing the cosine in terms of the sine leads to the equation
Asin®0 + Bsin+C =0 (7.5)
where
A = Xcos?y — 2) cosyy + 1
B = -2\ cos 79 sinyo(1 — Ao cosZyp) (7.6)
C = Mo — 1)cos®yg[(o + 1)A cos®y — 2]

where o is ro/ Re. It should be noted that there are cases where the trajectory may intersect

the Earth surface behind the initial threat position, or may not intersect the Earth surface
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at all. These cases are rejected, and the solution of interest is the smallest positive value 8

obtained.

The unadjusted time of flight is given by Regan and Anandakrishnan (1993, equation
(6.41b)), and is

Tp = To { tanyg(1 — cos @) + (1 — A)sin @ }
Vocosyo | (2 — A){[(1 — cos8)/(A cos2vp)] + [cos(yo + 0)/cos o]}
2r t (2/2) — 1]/2 (7.7)
+ VoA[(2/)) — 1]3/2 arelan | Cos 40 ctn(8/2) — sin 7o

7.3 Correction for Drag

It is assumed that the reentry vehicle is subjected to drag but not to any lift force. The

simplified aerodynamic equations are

dz
7 V cos~y
% Vsiny
d¢ (7.8)
i —2V[6¢e™*/* + gsin~)
dy _ -1
p7i gV~ cos~y
where C
(=v?, §=tCDS (7.9)

2m
with po being the air density at the Earth’s surface, Cp the drag coefficient, S a cross-
sectional area, and m the threat’s mass. These equations, which have been adapted from
Regan and Anandakrishnan (1993), are integrated numerically to obtain the time of flight, T,
and horizontal distance traversed, X,, by a body falling through the exponential atmosphere.

Modification of the Keplerian trajectory is made by comparing the cases of falling through
air, as in the previous paragraph, and falling through a vacuum. For the latter case the time

of flight and horizontal distance traversed are given by

20 + \ﬂg + 2g(20 - z,-)
= 7 ,

To

Xo = T (7.10)

to provide the quantities needed in (7.2) for this modification. An example is shown in
Figure 7.2.
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7.4 Impact Point

The foregoing formulas are for determining the impact point for a threat whose initial
position and velocity are given. Consider the spherical triangle NOS where N is the North
Pole, O is the subthreat point, and S is the subimpact point, where “sub” means projected
radially onto a sphere of radius a (see Figure 7.3). From the previous definitions it is seen
that £ — Ly is the arc NO, 6 is the arc OS, and % — L; is the arc NS. Let the angle NOS be

denoted by a, where

tana = —ug/vg (7.11)

Then the celestial coordinates (¢;, L;) of the impact points are given by

sin L; = sin Lo cos § + cos Ly sin 6 cos o (7.12)
and o
sin(do — ¢i) = ?%ﬂ (7.13)

s L;
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KEPLERIAN ORBIT

INITIAL POSITION

-~-

———

= A ——

-

Figure 7.1. The Keplerian orbit. The flight plane passes through the threat initial
position, the Earth center, and the initial velocity vector. This figure is viewed in an inertial

reference frame, in which the Earth is rotating.
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FALL THROUGH EXPONENTIAL ATMOSPHERE
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Figure 7.2. Example of fall through exponential atmosphere, and through vacuum. The
points are at equal time intervals. In general, the air resistance increases the flight time
while decreasing the horizontal range.

Figure 7.3. Location of the impact point “I” on the spherical Earth, where “O” is the
projection of the initial threat position onto the Earth surface and “NP” is the North Pole.
This picture is as viewed in an inertial reference frame, with the Earth rotating.
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Example TBM Trajectory and Footprint
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Figure 8.1. Example TBM Trajectory Projected onto Sea Surface and Footprint.
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Example TBM Trajectory and Footprint
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Figure 8.2. Example TBM Trajectory Projected onto Sea Surface and Footprint.
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CHAPTER 8

THE TBM FOOTPRINT

8.1 Covariance of Impact Position Error

The geometry of Keplerian trajectories in spherical coordinates is more complicated than
necessary for the estimation of the impact position error. For this estimate we consider a
parabolic trajectory on a plane Earth in a right-handed Cartesian system (z,y,2) in the
direction of the local (¢, L, r) (with z directed upward), and corresponding velocity compo-
nents (&, ¥, 2). Also, the acceleration of gravity, g, is assumed constant. The flight time and
the impact point at elevation z; are given by

Tr=g"! [20 + /2% +29(z0 — 2:')} y Ti=zo+zoTr, yi=yo+ yTF (8.1)

Even if the initial state error is Gaussian the joint PDF of the position error of the impact
point is a complicated function because of the nonlinearity of (8.1). To simplify the analysis,
the initial state errors are now taken to be infinitessimal quantities. To relate the initial

state errors with the impact position errors we need the (2 by 6) Jacobian matrix J, where

JT — ( A(zi, yi) )T

9(zo, Y0, 20, Z0, Y0, 20)

1 0
/ 0 1/2 ! 1/2 \
o [23 + 2g(z0 — ) Yo [23 + 29(z0 — 2)] (8.2)
_ g"1 20+ \/23 + 2g(z0 — Zg‘):l 0
0 g1 [ég + /2% +29(z0 — zs)]
\g_lie (1 + 20[22 + 29(20 — Zi)}"i"fz) ) (1 + 20[2% + 29(20 — zi)}—lfz) )

The (2 by 2) covariance of the impact position error C; due to uncertainty in the threat
state is related to the (6 by 6) covariance of the initial threat state error Co by

Cs = JCoJT (8.3)
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8.2 Uncertainty in the Drag Coefficient

If the threat classification is unknown, there may be appreciable uncertainty in the
appropriate value of the drag parameter §. This uncertainty will widen the extent of the TBM
footprint and needs to be taken into account. There are ways to estimate the drag and its
uncertainty from previous state estimates. A few such methods are outlined in Appendix A.
The following is a simplified procedure for estimating the TBM footprint variance assuming

that the expected value and standard error of § are given.

Let 0 and 05 be the mean and standard deviation of the hypothetical PDF of § represent-
ing our ignorance of its correct value. Carry out the numerical integration of the equations

(7.8) for two values of § and denote the results as follows:

Tr1, 6, for 6 =0 — oy

i (8.4)
Tp, § for §=30

Denote the geographic coordinates of the two impact points by (¢, L;) and (¢, L). The un-
certainty in local Cartesian coordinates due to the error in § is represented by the covariance

matrix
_ (¢1 — ¢)%sin’L (61 — #)(L1 — L)sin L
Cama? (g, Ol @O ) (8:5)

The total error covariance in the impact point is given by

The impact “footprint” resulting from the initial state vector and error covariance is taken to
be a Gaussian PDF with mean given by the geographic impact location ((7.12) and (7.13))
of the expected threat state, and covariance given by (8.6). Some examples are shown in
Figures 8.1 and 8.2. When the TBM footprint overlaps a defended area, as it always does to
some extent, as in Figure 8.3, the probability that the TBM will impact within the defended
area is the integral of the footprint PDF over the defended area, and represented by P, as

discussed in Section 9.3.
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Figure 8.3. Example TBM Footprint and Defended Area.
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CHAPTER 9

DETERMINATION OF EVALUATION PARAMETERS

9.1 Objective Probabilities

The immediate problem is to determine the objective of each threat in a battle situation.
An “objective” is any surface unit or other defended point /region that may be the objective
of an enemy attack. In situations where there are a large number of defended positions
that might be under attack, as in the case of a task force, there is uncertainty as to which
position is the objective of any given threat. This suggests the assignment of an “Objective
Probability” to each threat-objective pairing. Let Py; denote the probability that objective
J is the target of threat k. Then for a threat capable of reaching any of the objectives

Y Pj=1 forallk (9.1)
; :
Otherwise 4
Prj=0 forallj (9.2)
for those threats k£ incapable of reaching any objective. Then we can use a Markov update
model to assess probability that a state will be reached by a threat k.

9.2 ASCMs

The targets of ASCMs are assumed to be defended points, each having a specified po-
sition. Some of these positions may change during an engagement. The probability that a
given threat is targeting a given objective would seem to depend on several circumstances:
(1) the perceived value of the objective, (2) the flight time to the objective, and (3) the

energy requirement to reach the objective.

Each defended point is assigned a Perceived Value V{p ) and an Actual Value V( %) The
value V{P) determines the probability of its being targeted while V{ %) determines the effort
to be expended in its defense. These values are not necessarily equa.i, because the defender

may have some knowledge about the objective that the attacker lacks.

The flight time and energy requirement depend on the unknown threat trajectory. Ways
to hypothesize the trajectory of an ASCM and arrive at plausible values of the flight time
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and energy requirement are discussed in Chapters 3, 4, and 6. Let Ty, be the ETA flight time
of threat k to objective j. Similarly, let Lj; be the drag loss incurred by threat & in its ETA
flight to objective j. These values are used to calculate a preliminary objective probability
ij. It seems reasonable to assume that the probability of targeting an objective increases

both with flight time and drag loss. Accordingly, the formula

i v @) y®
ij — J 2

\/Tkijj ; \/Tkijj

(9.3)

9.3 TBMs

For each threat its initial state estimate determines a “TBM footprint” in terms of the
PDF of its impact point, as described in Chapters 7 and 8. The assignment of values of Py; to
the defended positions is different for defended points and defended areas. Consider first the
defended points. Each defended point lying within this footprint is assigned a preliminary

value of ij in proportion to the footprint density at its position.

Each defended region is assigned a Perceived Value per Unit Area VV}” ) and an Actual
Value per Unit Area W'j(a). The reason for defining the values of defended areas differently
from those for defended points is explained below. Defended areas have the complication
that the radius of destruction about the impact point depends on the yield of the threat,
which may not be known. The simplified procedure described here considers this effect only
through values of the “Threat Menace” My, which are assumed specified along with other
features of threat classification in advance of the “Threat Evaluation” being described here.

Each defended region lying within or overlapping the footprint is assigned a preliminary
value of f’kj in proportion to the probability that the TBM will impact within the area. This
probability is a surface integral of the footprint PDF over the defended area.

The values obtained need to be normalized, noting that the dimensions of the preliminary
values for the defended points are different than those for the defended areas. However, the

product of the preliminary values ij with the corresponding Wj(p ) have the same dimensions
as the preliminary ij values for the defended points. Accordingly, values ij = W'J(p )ij

are defined.

9.4 Normalization

Now that the dimensions of the P; ; are the same for defended points and defended areas,

these are all normalized together so that their sum over all defended positions is unity for
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each threat. That is,
-1
P};j = Pg}' Z }Skj for all & (94)
J

9.5 Time-Ordered Evaluation Parameters

It would be great if the threats could be adequately characterized by a single parameter
each. However, it is easy to visualize situations in which such a simple characterization
fails. Consider two threats, “A” and “B”, where threat “A” reaches a low-valued asset
quickly, while “B” reaches a more valuable asset later. Even in this simplistic scenario it is
evident that the Weapons Control System (WCS) needs information that includes times of
arrival. In addition, the optimal use of defensive assets (missiles) requires additional types of
information, such as estimates of kill probabilities for the various threats, shooting platforms,

launch times, etc., not to mention the scheduling of illuminators and magazine limitations.

The problem addressed here is to provide an evaluation of the threats based solely on
the current estimates of their states and properties, along with the positions and values
of the defended assets. The evaluation parameters provided by this study are insufficient

for prioritization of the threats, which is expected to be carried out subsequently. Defense

consists of the following steps:
THREAT EVALUATION — PRIORITIZATION — ENGAGEMENT

Consider now the product that “THREAT EVALUATION” should provide to “PRIOR-
ITIZATION”. Two alternative characterizations are proposed: (1) The “Maximum Possible
Value Loss” (MPVL), and (2) the “Maximum Expected Value Loss” (MEVL).

The MPVL, for each threat, is a monotonic function of time beginning with the current
time. At any given time the MPVL is equal to the value (V(®) of the most valuable asset
that the threat could reach by means of an ETA trajectory. At this time the threat is capable
of reaching a definite set of assets. This set includes the assets belonging to previous sets.

Since the MPVL is the maximum V(%) in the set, it monotonically increases with time.

The earliest arrival time of threat k to defended asset J 18 Ty;. For each threat k these

values are reordered to obtain a set of ordered arrival times ’f’ki, where
Toa < Tha < Tia < . (9-5)

where every 7 corresponds to one of the asset indices j for the given threat k. Having ordered
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the arrival times to obtain the pairings
(k,7) ~ (k, J) (9.6)

the ordered Actual Asset Values V,gz ) are obtained from the original Vj(a) by the pairing
(9.6). The MPVL values are then obtained by taking

Eyi = max(Eyy, Exg, ---, Exi) (9.7)

The MEVL is obtained in the same way, by replacing the V;-(a) values by V;-(a) Pyj. Note
that the pairings (9.6) and the Ty are the same as before. However, the Ej; values may be
different than in the MPVL case.

The implementation of threat evaluation is capable of providing both the MPVL and the
MEVL. Neither is voluminous or not very computer intensive. It is suggested that simulation

with various scenarios be performed in order to decide which of the two is preferable.
9.6 Algorithm

The determination of the Objective Probabilities proceeds in the following order:

e Determine the positions, and the Vj(p) and Vj(a) values of all defended points, and the

locations, extents, and the Wj(p ) and Wj(a) values for all defended areas.

e Obtain from the Track Server the estimated initial states and covariance matrices for all

active threats.

e Obtain or hypothesize classification data on each threat. If an ASCM, specify its Mk,
8™, and B™. If a TBM, specify its M, 6, and Ad.

e For each ASCM, k, determine the simplified trajectory to each defended point j and the
values Ty, Lxj, and Py;.

e For each TBM, k, determine its footprint, and the values Ty; and Fy; for each defended

point and area.

o Determine the T} and E'ki values.

9.7 Example

A task force consists of six units deployed on a two by three rectangular array as in Figure

9.1 (on an arbitrary scale), with separation of three kilometers between adjacent units. A
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threat is initially observed at an altitude of five kilometers, at a distance of five kilometers
downrange. The threat is initially in horizontal flight and arrives in a circular arc, targeting

unit number five. The relative values of the units (%(p ) values) are (1,5,2,2,4,2), respectively.

The variation with time of the “Time to Go” for the ETA trajectory to each unit (7}
values) is displayed in Figure 9.2 on an arbitrary scale. These values for all units decrease
as the threat approaches, but finally only the T)j for unit five (the targeted unit) decreases
to zero, as the threat arrives after 13 seconds. The variation with time of the “Objective
Drag Loss” for the ETA trajectory to each unit (L; values) is displayed in Figure 9.3 on an

arbitrary scale. These values exhibit about the same trends as the Time to Go values,

The variation with time of the Objective Probabilities for each unit (P; values) is shown
in Figure 9.4 on an arbitrary scale. These values were computed according to equations (9.3)
and (9.4). The defenders at first would assume that it is more probable that the threat is
targeting unit 2 because of its higher value. But after about three seconds, the Objective
Probability of unit 5 (the true target) becomes higher, as the Time to Go and Objective
Drag Loss to all other units become great enough to depress their Objective Probabilities in
comparison to that for unit 5, the true targeted unit.

The evaluation parameters MPVL and MEVL, as described in Section 9.5, are illustrated
in another example described in Appendix B.
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Figure 9.1. Scenario with six defended points and one ASCM threat. Defended Point

#5 is the threat’s target, initially unbeknownst to the defenders.
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Figure 9.2. Evolution of the ETA arrival times for the scenario of Figure 9.1.
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Figure 9.3. Evolution of the ETA drag loss for the scenario of Figure 9.1.
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CHAPTER 10

ORGANIZATION OF THE COMPUTATIONS

10.1 Background

The algorithm described in this chapter considers two types of threat — ASCMs and
TBMs — as well as two kinds of defended positions — Points (e.g. ships) and Shore Areas
(e.g. cities). Treatment of ASCMs differs from treatment of TBMs in the following respects.
Each ASCM is considered potentially able to target any of the Defended Points. These are
given “Objective Probabilities” to indicate which are more likely to be targeted.

For simplicity, the Objective Probabilities are based on the ezpected state of the ASCM,
regardless of the errors in the state estimation. A maneuver is required for the threat to reach
any of the Defended Points. A hypothesized simplified trajectory is proposed for each threat-
objective pair, and used to determine the time of arrival and energy usage requirement. The
Objective Probability is high for points that can be reached quickly (early time of arrival)
and easily (low drag loss). The Objective Probability is zero for those points impossible for
the threat to reach under reasonable assumptions regarding its flight capabilities.

In contrast, the trajectory of a TBM is considered determined by the threat character-
istics (e.g., mass, drag coefficient, etc.) and initial state. Maneuvers are not considered. If
its target were considered determined only by its ezpected state, most likely it would not
reach any of the Defended Points. These are possible targets only because the initial threat
state and its physical properties are not precisely known. Accordingly, both the covariance
matrix of the threat-state estimation errors and uncertainty in the value of the threat’s
drag coefficient are considered. These determine a “footprint”, which is the PDF of the
threat’s impact point. Defended Points lying within this footprint are assigned Objective
Probabilities related to the footprint PDF.

Extended shore areas may be targets of TBMs, but not of ASCMs unless there are
Defended Points within the area. The Defended Points are represented by their positions,
which may move during the engagement, and by an “Actual Value” (Va), and a “Perceived
Value” (Vp). The Perceived Value is used to calculate the Ob jective Probability, while the
Actual Value determines how much effort is to be expended in its defense.
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A Defended Area can be represented by a circle, ellipse, or polygon. A TBM generates
an Objective Probability determined by the intersection of its footprint onto the Defended
Area. There is no structure. A real defended area such as a city would have variation in
value from one part to another. This feature can be simulated by placing defended points

within the area.

The Objective Probabilities form a two-dimensional matrix whose dimensions equal the
number of threats (active at a given time) in one dimension, and the number of Defended
Points and Defended Areas in the other. These values, along with the Va values, constitute

an important input into the evaluation of the threats.

Engageability of the threat is not considered. The number and positions of the shooting
platforms is not included among the data used. No PIPs are generated. The Objective
Probabilities are estimated without regard to whether or not the threat can be engaged, or

the most favorable launch times, etc.

10.2 Simplified Trajectories

For each (ASCM - Defended Point) pair a trajectory producing the soonest arrival time
is determined. The initial threat-state error covariance is ignored, and the trajectory is based
entirely on the initial ezpected state. The initial speed is maintained constant throughout
the flight. The trajectory producing the earliest arrival time is determined. This lies on the
plane determined by the initial threat velocity and the Defended Point. Initially there is a
maximum-g turn followed by a CV segment to the Defended Point. Cases where this pattern
would require the threat to fly below the sea surface are adjusted if possible.

The initial state estimate of a TBM including the covariance matrix generates a suite of
hypothetical trajectories, one for each possible initial state. The flight follows a Keplerian

orbit modified for liftless drag in an exponential atmosphere.

10.3 Determination of the Objective Probabilities

At any given time, all the threats that are active at that time are considered one by one.
The ASCMs are treated separately from the TBMs.

For an ASCM, all the Defended Points are considered. For each Defended Point the
drag loss along the simplified trajectory is approximated on the basis of whatever threat
information is at hand. All incomplete threat information is hypothesized in a way that
minimizes flight time and drag loss. The Objective Probability for each Defended Point is
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based on these two values. After all Objective Probabilities have been approximated in this

way, they are normalized so that their sum over all Defended Points is unity for each threat.

For a TBM, the first step is to approximate its footprint on the Earth’s surface. The
expected initial threat state is used to determine a single Keplerian orbit to the Earth
surface. Next, the atmospheric effect is approximated by using a simplified dynamic model
of a mass point falling in a planar orbit, without lift, from the expected initial state to the
Earth’s surface. The resulting flight time and distance provide a correction to the previously-

determined Keplerian orbit to give a more accurate impact position and flight time.

The initial state covariance is usually assumed to be Gaussian. But even with this
idealization, the complicated nonlinear flight path makes it difficult to get a closed-form
footprint PDF. Instead, the impact position covariance is determined by assuming small
errors and a parabolic planar trajectory through an airless medium. In addition to the
error in impact position due to error in the estimation of the initial threat state, the error
due to ignorance of the threat’s drag coefficient is estimated. This is done by making drag
corrections corresponding to two values of the drag coefficient differing by one standard
deviation of the uncertainty. The separation of the two impact points provides an increment
to the footprint covariance. This impact covariance is centered on the expected impact
point that was previously determined by a somewhat more complete analysis, and is used to

generate a two-dimensional Gaussian PDF to represent the impact footprint.

Defended Points lying within the impact footprint are assigned Objective Probabilities
related to the Perceived Value and the PDF density at that position. Defended Areas
intersecting the footprint are assigned Objective Probabilities related to their Perceived

Values and the integrated footprint probability of impact in the intersection.

10.4 Pseudocode for Global Threat Evaluation

Initialize with n = 0 (no threats), and m = 0 (no defended positions). Actions to be
performed are one of the following:

e Add a threat track.

® Drop a threat track.
Update a threat track.
Add a defended point.
Delete a defended point.

Move a defended point.
10-3
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e Add a defended area.
e Delete a defended area.
e Calculate the Threat Evaluation Parameters.

perform a new action
update the battle time to the time of the action
if new track added
n=n+1
state(n) inputted
M(n) inputted
elseif track k; dropped
if ka<mn
M kg = My,
state(ky) = state(n)
end
n=n-1
elseif threat track k, is updated
state(k,) updated
My, updated
elseif a new defended point added
m=m-+1
position, n(lp ), and n(f) inputted
elseif a defended point j4 is deleted
if jg <m
position(jg) = position(m)
parameters(jg) = parameters(m)
end
m=m-—1
elseif defended point j,, is moved
position(jy,) is changed
elseif a defended area is added
m=m+1
position, W,(,f ) , and Wr(yil ) inputted
elseif defended area jg is deleted
if jg<m
10-4
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position(jg) = position(m)
parameters(jg) = parameters(m)
end
m=m-—1
elseif Threat Evaluation Parameters are to be calculated
fork=1:n
if threat(k)=ASCM
forj=1:m
if position(j) is a defended point
determine an ETA trajectory from k to j
if the ETA trajectory is valid
calculate Tkj and ij
end
end
end (of j loop)
calculate }Bkj
if threat(k)=TBM
calculate the Keplerian orbit, range and time
correct the Keplerian parameters for drag
calculate the TBM footprint
forj=1:m
if position(7) is a defended point
calculate kaj
elseif position(j) is a defended area
calculate ij and ﬁkj
end
end (of j loop)
end (of if ASCM or TBM)
calculate Fy;, T, and E’z'j
end (of k loop)

end (of action)

The organization of these computations is shown schematically in Figure 10.1.




NSWCDD/TR-00/46

10.5 Computation Modules

The following numbers are defined:

na  Number of Cruise Missiles (ASCMs)
nt  Number of TBMs

mp Number of Defended Points

ma Number of Defended Areas

nd Number of Data Points in Trajectories

derivs - a function used during Runge-Kutta numerical integration (see Press et al, 1986)

Inputs
t time (s)
y (4 by 1) Vector of Dependent Variables
delta Modified Drag Coefficient (1/m)
hatm 1/e altitude of air density (m)
Outputs
dydt (4 by 1) Vector of Derivatives

dragloss — a function to calculate the drag loss

Inputs
Cdo Drag Coefficient at Zero Lift
K - A Coefficient in Drag Relation
rOvec (3 by 1) Initial Threat Position (m)
Isvec (3 by 1) Targeted Point Position (m)
r0dotvec (3 by 1) Initial Threat Velocity (m/s)
bm Minimum Allowed Turn Radius (m)
kappa Physical Parameter for Air and Vehicle (kg/m)
m Vehicle Mass (m)
flag Flag Indicating Validity of Inputs

etarcvec (3 by 1) Position of ETA Arc Center (m)
etartvec (3 by 1) Position of Transition Point (m)
etathetat Arc Length (rad)
Outputs
etaloss Drag Loss (kg m?/s?)
10-6
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falltime — a function called for each TBM at desired time
Inputs

hatm Altitude where air density is 1/e of surface value (m)
delta Drag Coefficient (1/m)

VOcel Initial Threat Speed (m/s)

gamqQcel Initial Flight Angle (rad)

z0 Initial Threat Altitude (m)

zi Altitude of Impact Area (m)

dt Time Increment for Numerical Integration (s)

epsi Parameter Needed in Runge Kutta Integration

hl Parameter Needed in Runge Kutta Integration

hmin Parameter Needed in runge Kutta Integration
Outputs

Tfall Time of Flight thru atmosphere (s)

Xfall Range (in inertial system) reached during flight (m)

footprin — a function called for each TBM at desired time

Inputs

elong0 Initial Threat East Longitude (rad)
nlat0 Initial Threat North Latitude (rad)
r0dotvec (3 by 1) Initial Threat Velocity (m/s)

Co Initial Threat State Error Covariance

z0 Initial Threat Altitude (m)

zi Altitude of Impact Area (m)

hatm Altitude where air density is 1/e of surface value (m)

delta Drag Coefficient (1/m)

dt Time Increment for Numerical Integration (s)

epsi Parameter Needed in Runge Kutta Integration

hl Parameter Needed in Runge Kutta Integration

hmin Parameter Needed in runge Kutta Integration
Outputs

elongi Impact Point East Longitude (rad)
nlati Impact Point North Latitude (rad)
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Ci (2 by 2) Covariance of Impact Position Error (m?)
TF Expected Flight Time (s)

gentraj — called at beginning of run

This is supplied by used to generate a number n of threat trajectories. These are used

to input initial threat states and covariance matrices at different times.

Inputs
none
Outputs
n Number of threat trajectories
na Number of ASCM Trajectories
nt Number of TBM Trajectories
nd Maximum number of time steps in trajectories
(nd by n by 6) Array of threat states
(nd by n by 6 by 6) Array of covariance matrices
Mvec (n by 1) Threat Menace parameter

kepler — a function to find the flight time and arc traversed in Keplerian orbit

Inputs
z0 Initial Threat Altitude (m)
zi Altitude of Targeted Area (m)

rOdotcel (3 by 1) Velocity Vector in Celestial System

Outputs

thetakep Arc Distance Traversed in Keplerian Orbit
TFkep Time of Flight in Keplerian Orbit

makeJ21 - a function that generates the transformation matrix J21

Inputs

phil,L1  Geographic Position of First Cartesian System (rad)
phi2,L2  Geographic Position of Second Cartesian System (rad)

Output
J21 (3 by 3) Transformation Matrix
10-8
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overlap — a function that computes TBM impact probability
Inputs
x0,y0 Coordinates of Center of Defended Area (m)

asemi Semimajor Axis of Elliptical Region (m)

bsemi Semiminor Axis of Elliptical Region (m)

phia direction of line of apsides (rad)

xi,yi Coordinates of Center of TBM Footprint (m)

Ci Covariance Matrix of Footprint PDF (m?)
Output

prob Probability of Impact Within Defended Area

simptraj - a function called for each (ASCM - Defended Point) pair at desired time

Inputs
rOvec (3 by 1) Initial threat position (m)
rOdotvec (3 by 1) Initial threat velocity (m/s)
bm Minimum allowed turn radius (m)
phim Maximum allowed heading error (rad)
rsvec (3 by 1) targeted point coordinates (m)
Outputs
flag Indicator of ETA trajectory validity

etarcvec (3 by 1) Position of turn arc center (m)
etartvec (3 by 1) Position of transition point (m)
etathetat length of turn arc (rad)

eta ETA arrival time (s)

s Length of CV segment (m)

taskfors — to be written by user and called at desired times

Inputs
none

Outputs
m Number of Defended Assets
mp Number of Defended Points

10-9
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Number of Defended Areas

(mp by 3) Positions of Defended Points (m)

(ma by 3) Centers of Defended Areas (m)

(ma by 1) Semimajor axes of Defended Areas (m)
(ma by 1) Semiminor axes of Defended Areas (m)
(ma by 1) Directions of Lines of Apsides (rad)

(m by 1) Actual Values of Defended Assets

(m by 1) Perceived Values of Defended Assets

timorder - a function that orders the ETA arrival times

Inputs
k

T(1:n,1:m)
Va(1l:m)
E(1:n,1:m)

Outputs

threat index

(or numit) Number of Defended Assets
ETA Times of Arrival

True Values of Defended Assets
Expected Loss of Value

That(1:n,1:m) Ordered ETA Times of Arrival (s)

(
Vhat(1:n,1:
(

m) Ordered True Values of Defended Assets

Ehat(1:n,1:m) Ordered Expected Loss of Value
Etil(1:n,I:m)  Maximum Possible Value Loss

For computation of Maximum Expected Value Loss, Va*P is inputted instead of VA,

and the outputted Etil contains MEVL values.

twoarc - a script file for displaying two-arc trajectories

Inputs
rOvec
rOdotvec
rsvec

nomega

Outputs

none

(3 by 1) Initial Threat Position (m)
(3 by 1) Initial Threat Velocity (m/s)
(3 by 1) Targeted Point Position (m)

(or na) Number of Turning Rates
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uodeint — a function based on the Runge Kutta ODE solver, “odeint” (see Press et al, 1986)

Inputs

yinout
t1,t2
epsi
h1,hmin

Outputs

yinout
nok,nbad

(4 by 1) Vector of Dependent Variables
Beginning and End Times of Stepped Interval
Parameter Governing Integration Process

Parameters Governing Integration Process

(4 by 1) Vector of Dependent Variables
Parameters Displaying Result of Step

urkqc - a function used in Runge Kutta process, based on “rkqc” (see Press et al, 1986)

Inputs
yin
tin
delta
hatm
epsi,yscal

Outputs
yout

tout
hdid

hnext

(4 by 1) Vector of Dependent Variables

(4 by 1) Independent Variable

Modified Drag Coefficient

Altitude where Air Density is 1/e of Surface Value

Parameters Governing Stepping Process

Vector of Dependent Variables
Independent Variable

* Parameter Displaying Result of Step

Parameter Displaying Result of Step

urk4 - function used in Runge Kutta process, based on “rk4” (see Press et al, 1986)

Inputs
yin
tin,tout
delta
hatm

Outputs
yout

(4 by 1) Vector of Dependent Variables

Times at Beginning and End of Step

Modified Drag Coefficient

Altitude where Air Density is 1/e of surface Value

Vector of Dependent Variables
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CHAPTER 11

SUMMARY AND CONCLUSIONS

This report considers the case where a number of airborne threats may be targeting a
number of defended assets. The threats are assumed to be one of two types: Anti-Ship
Cruise Missiles (ASCMs) or Theater Ballistic Missiles (TBMs). The defended assets are of
two types: points (e.g., ships) or areas (e.g., cities). Each threat is evaluated to provide
parameters to be passed to the Weapons Control System to aid in prioritization and en-
gagement. The threat evaluation is usually based on the latest state estimate and whatever

classification information is available.

ASCMs are treated by constructing a simplified constant-speed trajectory to each de-
fended asset to estimate the Earliest Time of Arrival (ETA). These trajectories obey con-
straints limiting the lateral acceleration magnitude and heading error. Objective Probabil-
ities are estimated for each ASCM-asset pairing, based on the asset’s value, ETA, and the
energy requirement for reaching the asset.

TBMs are assumed unable to maneuver. Uncertainty in the impact point arises because
of state estimation errors and lack of knowledge of the physical characteristics of the vehicle.
This uncertainty is estimated to produce an impact Probability Density Function (PDF),
or “footprint”, representing the place where the TBM might land. Objective Probabilities
for each TBM-asset pairing are estimated on the basis of the asset’s value and the footprint
PDF at the asset’s position.

The evaluation of each threat is expressed in terms of two functions of time: the Max-
imum Expected Value Loss (MEVL) and the Maximum Possible Value Loss (MPVL). The
Objective Probabilities, asset values, ETAs, and other information are used to calculate the
MEVL and the MPVL. At any time the MEVL and the MPVL for a given threat express in
slightly different ways the value loss that would be incurred if the threat were to leak.

It is recognized that the assumptions upon which the hypothesized predictive trajectories
are based may not be universally applicable. The main assumptions have been (a) constant
speed, (b) a limited HE, and (c) a limited “g” capability. Constant speed results from
neglect of transfer between potential and kinetic energy upon descent or ascent, as well as

from disregard of drag losses and the possibility of powered flight. A limited HE assumes that
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the threat must continually be in a homing (seeking) mode. It is likely that less restrictive
predictive models will provide better estimates of ETA and a more useful threat prioritization

algorithm.
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A.1 Introduction

Air has a negligible effect on a Theater Ballistic Missile (TBM) during most of its flight.
Only the initial and final phases of flight are influenced by aerodynamic effects. During the
initial phase the TBM is usually subject to a large thrust force that makes it difficult to
estimate the aerodynamic effects. Therefore, the concepts discussed here apply only during

the final seconds of flight when it may be too late to take defensive action.

For aerodynamic forces on a body, the force is a function of the speed. If the force is a

function of the speed alone, the force law can be expressed as

Fo+ F(v) = md—v (A.1)
dt
or,
dv
Fo+ F(v) = my—— (A.2)

Fp is any constant force that doesn’t depend on v. For fluid resistance a fair approximation

to F(v) is
F(?9) = —c17 — ¥ |7 (A.3)

where ¢; and ¢y are constants that depend on the size and shape of the object. For spherical
objects, the approximate values of the constants in (A.3) are ¢; = &;D and ¢y = &3 D? where
D is the diameter of the sphere and & = 1.55 x 10™4 kg/sec and & = .22 kg/m. For two
cases, there is a limiting form of the drag problem depending on whether the speed is large
or small. For small v the limiting form is

F(9) = kp¥ — mgZ (A.4)
(% is the upward unit vector) while for large v, the limiting form is
F(V) = kp|U| U — mgZ (A.5)
The third alternative for the friction law is
F(v) = kpv? (A.6)

for the z and y components, while the z component is

F(v) = kpv® —mg (A7)
A-3
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Closed form solutions can be obtained for (A.4) and for (A.6-A.7) but not for (A.5). An

alternative to (A.4) that is sometimes used is to multiply ¥ by e~2/* in (A.4). What we are
interested in determining is estimators of the ballistic coefficient. For the dynamics laws that
have closed form solutions to the equations of motion can be used as a means for estimating

the ballistic coefficient. For other dynamics, alternative estimators are derived.

A.2 Solution of Equations of Motion

For motion along the z axis, in the quadratic case there are two differential equations to

consider: upward motion (positive v, minus sign) and downward motion (negative v, plus
sign)
dv

— + 2: —_ A.
mg £ e’ =m— (A.8)

The solution to (A.8) is

v
t—tp= / _mdv =7 (arctan (_v_o) — arctan (l)) (ris) (A.9)
v —MYg — C2v2 vt vt

t—tg= / —————MU——E =T (arctanh (E> — arctanh (—v—)) (fal) (A.10)
vy —Mg + Cc2v Ut U
where 7 = \/m/cag and vy = \/mg/cp. Solving these equations for v gives

v = vtan [tn i + arctallyg] (ris) (A.11)
Ut
t— tb ()
v = —uytanh — arctanh—| (fal) (A.12)
T v
The position as a function of time is therefore
to—1 Vg .
z — 20 = vyrlog (cos ( + arctanv—>> (ris) (A.13)
T t
and
t:) —1 Vg
z — zp = vrlog | cosh — = arctanh—t-)— (fal) (A.14)
t

Note for both of these cases, the = and y positions are the same as those in (A.11-A.12).
Expanding (A.13-A.14) using the standard identities gives

- —t
(2 — 20)/(ve7) = —logy/v? + v} + log [vtcos (tOT t) — vpsin (tOT )] (A.15)
h—t th—1t
(z = z0) /(7)) = --log\/'vt2 - vg + log [vtcosh (tOT ) — vgsinh ( OT )] (A.16)

A4
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For the z and y positions, the equations of motion follow from solving (A.5), which gives
1
T—z0= - In (byvpsin(a)t + 1) (A.17)
T
and )
Y=Y = In (byvgcos(a)t + 1) (A.18)
y

We will now assume both ¢ and ¢}, are both zero for the sake of simplicity. The second order

expansions for rising and falling objects, (A.15-A.16), become

2 (v} :
z — 29 = vy7log —t + vt + — (v_{) - %2) (ris) (A.19)
v/ vZ + vE T\

and
U4 2 '{3;‘; ;
z—2zp =vrlog | — === | + vot + — |v; +2-2| (fal) (A.20)
”? _ v% 2T V4

Thus, the effect of a quadratic drag term is to induce an ’acceleration’ whose magnitude

using the relationship vs/7 = g, becomes either 20%/g72 £ g. Approximating the solutions
for the z and y components gives

T — 1z = % [vRbzsin(a)t — FvRbisin®(a)t? + -], (A.21)

T

and )
Y=y =3 [vrbycos(a) — %*uf{b?;(:f:asz(@z)t2 +...] (A.22)

y

Note if we retain first order terms only, the slant range is

Ri(t) = \/(z — 20)? + (y — yo)? = vt (A.23)

Thus, under the circumstance that the drag is small, one could ignore the effects of drag on
the slant range velocity. Thus it suffices to design a two state filter to handle the slant range
when this approximation is true. A more realistic assumption is to keep the second order
term because b is in the range 50-500. For this situation, with the assumption b, = by, it is
better to go to third order filter.

A .3 Ballistic Estimators

These formulas enable one to determine the ballistic coefficient from tracking data, they
do not work for the types of drag functions that do not have analytic solutions. The method

1s general enough to work for any dispersive system of the type we are discussing. An
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estimator can be derived based on the following observation: Any dispersive system that

can be written as

d d
7T +V)=ZE=F (A.24)

where F’ is the portion not derivable from a potential, T + V is kinetic plus potential energy
or the total conservative energy E., and F' is the portion of the force not derivable from a

potential or the power delivered by an effective force F'.

For our application, the normalized E. is

E.=1vt4 gz (A.25)

There are several possibilities for the effective force,. depending on the circumstances. An es-
timator can be determined independent of the details of what F'(v) functional form provided

it is assumed that

F'(v) = kpf(v) (A.26)
Substituting (A.25) and (A.26) into (A.24) gives

Ed;(%vz + 92) = kpvf(v)

or

d(—;-v2 + gz) = kpvf(v)dt (A.27)
To derive an estimator from (A.27), the derivatives and the variables are made discrete.
d— Aj = (6; — 6i-1)
so (A.27) becomes
Ei — Ei_1 = kipivi f(vi)(ti — ti-1) (A.28)
Summing over ¢ gives

E, - FEy= Z kipivi f(vi)(ti — ti=1) (A.29)
1=1
If one defines D as the negative of the right side of (A.29), and recognizes that the variables

are measurements, the energy loss estimator LE is formed
LE =D+ E, - Eo (A.30)

which can be used as ones’ test statistic for a hypothesis test. General Electric (Reifler) has
attempted this. There are other alternatives to the energy estimator in (A.35) besides those

already mentioned.

A-6
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Another method is to solve the equation of motion for the drag coefficient, obtaining
zfh dv :
§=v"2 — ~9siny (A.31)

The change in threat speed Av is observed a number n of times along the TBM trajectory,
resulting in a set of values

Av;, At;, j=1,..,n (A.32)
At each observation an estimate of the drag coefficient
- Avej
- =2.2i [k | _ 2V
6j =6+ v; e/t [ At, } (A.33)

1s obtained, where § is the true value and Av,; are the errors in the observed speed increments

with standard error ga,. The weighted mean of these estimates is
> 5jv?e—25thtj _5_ Y Avej

K K
This weighting provides an unbiased estimate of the drag coefficient. To find the standard

8=

K=Y viElhag (A.34)

error of this estimate it is necessary to find the standard error in the speed estimate. This is
cumbersome in general even when the error in the estimates of the threat state are assumed
Gaussian. However, usually the threat speed greatly exceeds its error. Accordingly, it is
assumed that

5 — (9)] < 19] (4.35)

where the angle brackets denote expected value. The threat speed v = |7] is expressed by

v= \/ [(®) + (7 — @)IT(() + (7 - ()] (4.36)

where the magnitude of the vector within the parentheses is assumed small. To first order

in the small quantity this becomes

HTy
= v)\/l +2(v)~2{0)T(v — (9)) = % (A.37)

and
(v) = |(¥)| (A.38)

Thus, since v is a linear combination of the components of ¥, v is Gaussian if 7 is Gaussian.

The error in the speed estimates is

(o= (o) a‘)ow')
(Io - ) = 220

g,

(A.39)
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where C is the error covariance of the velocity estimates,

¢ =(l7- @5 - @) (A.40)

Estimates of the speed increments are not independent even when the speed errors are
independent. If one increment is overestimated, the following increment is likely to be
underestimated. However, the error in a speed increment is independent of the errors in all
the non-contiguous speed increments. The correlation between contiguous increment errors

has little effect, and the relation between them and those of the speed estimates is

0%, = 202 (A.41)

The error in the drag estimate is then

vej ]? 7TC(@
=@~ O - (-2 ) e - BT aan

The foregoing analysis is based on a number of assumptions, some of which have been
discussed previously. One is that the air density is a simple exponential function of altitude.
A more refined approach would be to take the actual density profile existent at the place and
time. Another is that the speed errors are independent of time (and altitude), whereas in
actuality these errors are likely to increase as the air density and drag increase. Still another

is that the expected velocity varies little during the time the observations are made.
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i APPENDIX B

EXAMPLE




CDD/TR-00/46

»
7

NSW

L g

g ndty
JO OLIRUDDS JO $)asse PIPUDJIP UD)L OYf) H0] sawuly [RALLL V15 JO uonnjoAs] gre] a1ndi

(s) aNWIL (s) anIL
0z Gl 1] S 0 0e Sl 4] % G ]
. y . 0 v v T 0
1
S S
m
ﬂ w
(178 W {101 2
< <.
: . F
{154 = ~ =
= iy 51 3
m = m
© ©
(174 ~ (174
. 52 —t Gge
F LVIMHL € LvadHL
(s) 3wl (s) awiL
0¢ Sk (118 S 0 (174 St 113 [ 0
— —r v 0 v . T v c
/ 5 1s
.nuu.,fm m m
—— mum -~
»
0t W. 101 W
< <
> S
d 161 o
S z Gl z
m m
) )
114 10¢
st e 3 8 e 1 e 8 v vt s = s s s s, et v o e e ¢ 32 mN S SIS 1 mN

¢ Lvaul _.h . ) b AVIRHL

B-5




NSWCDD/TR-00/46

Td o.:..mE

JO otRUDS B[} JO SJASSL PApUIJAP UM MY} d0j sso| Fedp Yo Jo uonuoay gy a3y

(s) aniL
0z St ol S 0
¥ LVIHHL 0L x

(s) 3nIL
(174 Gi ol S 0

-

ok
-

~N

Lol

¢ 1vadHL

04 X

R
L] ' o - (=
(s/-w B) 3071 OVHA

-

wn
~
(;s/;w B) SSO7 OVEA

v
g

-

(174

(174

L]

(s) aniL
St ot S 0
i g . 0
S0
{t o
Lo
a
4 “;
MW.L
Sc 3
N
(2]
g
{s¢
\ \ v
€ LVIYHL SO X
(s) anIL
St ot S 0
- v v T 0
S0
{1

ok
-

N
(3]
(zs/,w B%) 2507 2vda

ok
™

s

B-6



NSWCDD/TR-00/46

This scenario illustrates the time-ordered threat evaluation parameters, the Maximum
Possible Value Loss (MPVL) and the Maximum Expected Value Loss (MEVL), defined in
Section 9.5 of the main text. There is a task force consisting of fifteen defended points
and four Anti-Ship Cruise Missile (ASCM) trajectories, as shown in Figure B.1. The size
of each dot representing a defended point is proportional to its value. Here, there is no
distinction between actual and perceived value. The ASCM trajectories are numbered at
the point representing their initial position. The trajectories are shown in plan view, the

threat positions being projected vertically onto the horizontal plane.

The evolution of the Earliest Times of Arrival (ETAs) is shown in Figure B.2 for each
of the four threats. There are fifteen curves, one for each of the defended points. The
curve for each defended point terminates after the threat is no longer able to reach it. These
curves generally decrease with increasing actual time, but there is sometimes a rather abrupt

increase in arrival time when the threat progresses into a position less favorable for reaching
that target.

The evolution of ETA drag loss is shown in Figure B.3 for each of the four threats. These
curves generally display the same nature as those for the arrival times. The rate of drag loss
increases with decreasing radius of curvature, and thus the curves rise whenever the threat
needs to pull a higher lateral acceleration to reach the targeted point.

The evolution of the Objective Probabilities for Threat #1 is shown in Figures B.4a-e
at five different times. The size of the dots representing the defended points is proportional
to the Objective Probability. Points no longer reachable by the threat are indicated by
their absence from the figure. The Objective Probabilities for Threat #?2 are shown at three
different times in Figure B.5a-c, and for Threats #3 and #4 in Figures B.6a-b and B.7a-c.

The MPVL is displayed for the four threats at three different times in Figures B.8a-c.
The MEVL is similarly displayed in Figures B.9a-c. The amount of information represented
in these displays is small, as only the coordinates of the corner points of the staircase repre-

sentation are needed.

Figure B.10 displays the comprehensive MPVL and MEVL functions for all the threats.
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APPENDIX C

VARIABLE NAMES
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Comprehensive List of Variable Names

The units indicated apply only to the variable name in the computer program.

Chapter 2

u% J:@

g ¢ 2 &8 8% 5 =«

Va actual value of a defended asset (ndim)
Vp perceived value of a defended asset (ndim)
elong East longitude (rad)

nlat North latitude (rad)

r radial coordinate (m)

elong0 East longitude of point of tangency (rad)
nlat0 North latitude of point of tangency (rad)
u East velocity component (m/s)

v North velocity component (m/s)

w upward velocity component (m/s)

Cartesian component in East direction (m)
Cartesian component in North direction (m)
Cartesian component in upward direction (m)

East longitude at tangent point of Local Coordinate
System (LCS) (rad)

L at tangent point of LCS (rad)

a Earth radius (m)

ul velocity component in x1 direction (m/s)
vl velocity component in y1 direction (m/s)
wl velocity component in z1 direction (m/s)
xtil Cartesian coordinate in second system (m)
ytil Cartesian coordinate in second system (m)
ztil Cartesian coordinate in second system (m)
xhat Cartesian coordinate in third system (m)
yhat Cartesian coordinate in third system (m)
zhat Cartesian coordinate in third system (m)
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(Note that (Zo,%0,22) and (Z2,%e,22) are similarly defined in another LCS at another

point of tangency.)

Jik
[{P%}]

g

o o 8

(z0,%0)
(xf1,911)
(xs2,Yr2)

G

)

J

k
w®

®)
w;

Chapters 3 and 4

n
Nq
L
m
my
Mg
ng
fm

7o

-

7o
FS
Vi

bm

am
¢

ém
My,

n
na

nt

m

mp

ma

nd

fm

rOvec
rOdotvec
rsvec

Vt

bm

am

phi
phim
M(k)

Jacobian matrix (var)

suffix indicating geographic coordinates
semimajor ellipse axis (m)

semiminor ellipse axis (m)

eccentricity (ndim)

LCS location of ellipse center (m)

LCS location of ellipse focus (m)

LCS location of other focus (m)

trend (direction) of line of apsides (rad)
angular polar coordinate (rad)

index for defended asset

threat index

actual value per unit area (m~2)

perceived value per unit area (m~2)

number of threats (ndim)

number of cruise-missile tracks (ndim)
number of ballistic missile tracks (ndim)
number of defended assets (ndim)

number of defended points (ndim)

number of defended areas (ndim)

number of data points in trajectory (ndim)
maneuver factor (ndim)

initial threat position (m)

initial threat velocity (m/s)

asset position (m)

threat speed (m/s)

minimum allowed turn radius (m)
maximum allowed lateral acceleration (m/s?)
heading error (rad)

maximum allowed heading error (rad)

threat “Menace” (ndim)
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A B AB undetermined constants
e  TCVEC center of curvature (m)
EF EF undetermined constants
7t  rtvec transition point (m)
A Ahat undetermined constant
B  Bhat undetermined constant
C  Chat undetermined constant
0; thetat arc length traversed (rad)
0  theta arc length (rad)
b b radius of curvature (m)
fs  thetas another arc length (rad)
7;  rivec splash point or impact point (m)
a,b ab legs of a right triangle (m)
E length of a CV segment (m)
Chapter 6
Fp FD drag coefficient (ndim)
Fr, FL lift coefficient (ndim)
Kk  kappa a physical parameter of air (km/m)
Cpo Cdo drag coefficient at no lift (ndim)
K K an aerodynamic parameter for a threat (ndim)
p rtho air density (kg/m?3)
S S threat cross section area (m?)
m m threat mass (kg)
7o  rddotvec initial threat acceleration (m/s?)
Fp drag force (kg m/s?)
Fy, lift force (kg m/s?)
Ty thrust force (kg m/s?)
g acceleration of gravity (m/s?)
k upward unit vector (ndim)
u unit vector in direction of lift (ndim)
a a acceleration magnitude (m/s?)
a acceleration (m/s?)
L, Lo drag loss (kg m?/s?)
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Chapter 7
t ot time (s)
! omega Earth rotation rate (1/s)
Oc thetac arc length traversed (rad)
T T flight time (s)
Xo XO flight range in Keplerian trajectory (m)
Xa Xa flight range in air (m)
To TO flight time in Keplerian trajectory (s)
T, Ta flight time in air (s)
Voo VO initial TBM speed (m/s)
Re radial coordinate of defended area (m)
A lambda parameter in Keplerian calculation (ndim)
mu parameter in Keplerian calculation (m3~2)
h  hatm altitude where air density is 1/e surface value (m)
o sigma parameter in Keplerian calculation (ndim)
Tr TF Keplerian flight time (s)
v gamgq flight path angle (rad)
Y% gamq0 initial flight path angle (rad)
] Gray’s drag parameter (1/m)
¢ zeta square of threat speed (m?/s?)
alpha an angle in spherical triangle (rad)
Xfall horizontal range of fall through air (m)
Tfall flight time of fall through air (s)
espi parameter in Runge Kutta integration
hl parameter in Runge Kutta integration
hmin parameter in Runge Kutta integration
Chapter 8
J J Jacobian (matrix)
co Co threat-state error covariance matrix
Cci G TBM footprint covariance matrix (m?)
5 deltab expected drag parameter value (1/m)
o5 sigmad standard error in drag parameter (1/m)
Tm TF1 flight time with different drag (s)
61 arc length with different drag (rad)
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Cs; GCs footprint covariance from state errors (m?)
Cqy Cd footprint covariance from drag error (m?)
Chapter 9
Py,  P(ky) Objective Probability (ndim)
Ty; T(kyj) ETA arrival time (s)
Ly; Lkj) ETA drag loss (kg m? s2)
Ey;  E(k,) Maximum Expected Value Loss (ndim)
El;{;?) Ep(k,j) Maximum Possible Value Loss (ndim)
Py; Objective Probability for defended point (ndim)
1 iunit ordered index for defended asset
Conflicts
a Earth radius, semimajor axis, acceleration, leg of triangle
b radius of curvature, semiminor axis, leg of triangle
(] heading error, E longitude
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